Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Study Suggests Blood Test Could Diagnose Alzheimer’s Earlier

25.03.2002


Scientists have developed a blood test that may reveal changes in the brain caused by Alzheimer’s disease. The technique, tested so far only in mice, predicts the amount of amyloid plaque (formed from clumps of proteins that kill surrounding cells) in an animal’s brain. The research, detailed in a report in the current issue of the journal Science, holds promise for the development of predictive methods to diagnose the disease years ahead of the onset of clinical symptoms.



David Holtzman of the Washington University School of Medicine and colleagues worked with mice that had been genetically engineered to develop an Alzheimer’s-like disease. They measured the amount of amyloid-b (Ab) protein in the animals’ blood and found that it did not correlate to the extent of plaque formation in the brain, which is also the case for humans. But when they treated 49 animals with an artificial antibody known as m266, they found that their levels of Ab increased dramatically within as little as five minutes. Moreover, the increased blood levels correlated with the amount of amyloid in two regions of the brain affected by Alzheimer’s, the hippocampus and the cingulate cortex. According to study co-author Ronald B. DeMattos of Washington University School of Medicine, "a simple injection of m266 altered the metabolism of Ab and unmasked important correlations with brain pathology."

Whether the results will apply to humans suffering from Alzheimer’s disease remains unclear. Even if the test does work, it can only diagnose patients who have already started to accumulate amyloid. But as Holtzman notes, "such a test also could distinguish individuals suffering from dementia caused by Alzheimer’s from those with other types of dementia, and may help us evaluate an individual’s response to particular medical therapies."

Sarah Graham | Scientific American

More articles from Health and Medicine:

nachricht Ayahuasca compound changes brainwaves to vivid 'waking-dream' state
19.11.2019 | Imperial College London

nachricht A step closer to cancer precision medicine
15.11.2019 | University of Helsinki

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>