Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel model of childhood obesity

13.06.2007
Novel model of childhood obesity increases understanding of mechanisms controlling how much we eat

The consumption of sweetened soft drinks by children has more than doubled between 1965 and 1996 and the contribution of these drinks to the development of childhood obesity is a cause for concern. Few studies have attempted to investigate the interactions between diet and the body’s energy balance control systems in early life, for obvious reasons. A model of childhood obesity using fast-growing juvenile rats has been developed by scientists at Aberdeen’s Rowett Research Institute and it is beginning to reveal new insights into how the brain responds to overeating.

The need for a better understanding of what is happening to the body’s energy balance control mechanisms during the development of obesity is becoming increasingly important as we struggle, and often fail, to treat weight gain with weight-loss diets. There are many studies of diet-induced obesity with adult rats but very few with juvenile rats. The Aberdeen scientists successfully developed a potential model for childhood obesity using fast-growing juvenile rats that were fed different combinations of high-energy diets in combination with a high-energy liquid drink.

The ability of liquid diets to stimulate overeating in rats more readily than solid diets is well documented, but the mechanism of this effect, and specifically the interaction of these obesity-inducing diets with the body’s energy balance control systems has not been explored in any depth.

The recently-published studies showed large changes in the brain’s signalling systems when the young rats were overeating, but the response was the same whether the rats were eating solid food, or receiving a high-energy drink. Although the high-energy diets eaten by the rats produced this response, it failed to make the young rats reduce the amount of food they were eating.

“The brain’s response to over-eating which we showed in this study is actually part of the same system that is designed to stop animals starving to death. When an animal is hungry, or food is in short supply, the brain signals are very effective at making it try and find food at all costs. There’s a clear evolutionary benefit in having this system,” said Professor Julian Mercer who led the study at the Rowett Institute.

“However, when the system is effectively put into reverse, when animals are overeating, we can clearly see a response, but for some reason this time it doesn’t make the rats change their behaviour, and so they continue to overeat. Perhaps the evolutionary drive to stop overeating isn’t as powerful as the drive not to starve. It seems likely that these obesity-inducing diets also engage the parts of our brain which are to do with pleasure and reward, and our future work with this model will investigate these systems.

“It’s also interesting to note that the response we measured was to the weight gain by the rats and it was the same whether the source of the extra energy was solid food or the high-energy drink,” said Professor Mercer.

Sue Bird | alfa
Further information:
http://www.rowett.ac.uk

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>