Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough developments in rheumatoid arthritis reported

12.06.2007
Developments in rheumatoid arthritis reported at Federation of Clinical Immunology Services meeting in San Diego

Peter K. Gregersen, MD, stares at x-rays of hands, searching out the telltale signs of inflamed joints and wrists from his research subjects with rheumatoid arthritis. With these clinical features at his side, he turns to the basic building blocks of life – the human genome – to figure out what makes these people susceptible to the disabling inflammatory condition.

Dr. Gregersen has finally closed the circle between key genes identified in his laboratory at the Robert S. Boas Center for Genomics and Human Genetics at The Feinstein Institute for Medical Research in Manhasset, NY and more than a 1,000 patients with rheumatoid arthritis. The genes will help tell the story of how the immune system works to create specific antibodies that in turn increase a person’s risk for this crippling disease.

On Monday at the Federation of Clinical Immunology Services’ (FOCIS) meetings in San Diego, CA, Dr. Gregersen and his colleagues will be presenting the lab’s latest genetic findings. The group conducted genome-wide scans to identify polymorphisms, or genetic variants, that are associated with the inflammatory condition and can be used to understand the triggers of the disease. This will provide key insights into the pathways underlying rheumatoid arthritis and other autoimmune diseases. It may ultimately provide tests to predict who will respond to the available new treatments. Franak Batliwalla, PhD, also of The Feinstein Institute, will be presenting related studies on biomarkers and genetic influences on drug response at the same meeting.

Identifying Immune System Mediators

About one percent of the US population will develop rheumatoid arthritis, an autoimmune disease that leads to painful joint swelling. Scientists are cracking the genetic code that makes the immune system wage an attack on a person’s joints. Over the last decade, Dr. Gregersen and his colleagues have been amassing a genetic database complete with siblings with rheumatoid arthritis (and some family members without it) in an attempt to single out those genes that are involved in the autoimmune process. In fact, in 2004, they identified a gene called PTPN2 that confers a two-fold risk for rheumatoid arthritis and a number of other autoimmune diseases. The Feinstein now holds the largest collection from rheumatoid arthritis patients in the world.

Following the cellular pathway, it has been shown that PTPN22 influences the “trigger point” for activation of T-cells, immune cells that are normally called on to wage battle against infection. In autoimmune diseases like rheumatoid arthritis, PTPN22 appears to put people at higher risk of a wayward T-cell response.

The group has since gone on to use modern genetic methods to search for single nucleotide polymorphisms, or SNPs, to identify players that have fallen under the radar of older methods. The group has discovered another signaling molecule that seems to increase a person’s risk for rheumatoid arthritis by 30 percent. (The paper reporting the gene is in press.)

In collaborations with other scientists worldwide, Dr. Gregersen has also been able to show that certain markers are strongly linked to certain ethnic groups and others are not. “This will help us in figuring out what exactly is going on in this illness,” he said. “It’s pretty exciting.”

Early on in the rheumatoid arthritis research game, when HLA popped out as a major genetic player in the condition in the 1980s, Dr. Gregersen discovered that there was a shared bit of DNA that traveled in the disease. What took two years to identify in the laboratory – shared bands of genetic material – would take two days today. And that speed is what excites Dr. Gregersen. “We have the tools to get at these genes rather quickly now,” he said. “The more patients and controls that we have, the more power we will have to pull out new genes and make associations.”

In another major breakthrough, scientists have discovered the importance of a substance called citrulline as a target for immune attack in rheumatoid arthritis (RA). This immune system antibody associated with rheumatoid arthritis recognizes citrulline, which seems to be a key player in the condition. Indeed, the HLA associations with RA have now been shown by Dr. Gregersen and others to directly regulate the immune response to proteins containing citrulline. Citrulline is formed when a specific enzyme comes in contact with arginine, one of 20 common amino acids in proteins. When one of the enzymes is present, nitrogen is removed from the chemical structure of arginine and it converts into citrulline.

Laboratories have developed a test to measure for anti-cyclic citrullinated peptide antibody, or anti-CCP. It is now being used as a diagnostic for rheumatoid arthritis. Scientists are now finding that patients have CCP antibodies months or years prior to the illness, suggesting a way to identify the disease before it starts and perhaps offer treatments to stave off the symptoms. It turns out that those with these antibodies who also have a particular variety of HLA, a complex of genes that regulate immune function, have a 30 times higher risk of developing rheumatoid arthritis than those without these genetic risk factors.

Scientists at the University of Colorado are now analyzing the genes from 2,500 first degree relatives of rheumatoid arthritis patients and testing CCP levels to see whether there is a way to predict, based on these measurements, who will go on to develop rheumatoid arthritis.

Ultimately, understanding how the genes work to confer illness will help in the development of new treatments.

Normal Control Genetic Database

In addition, The Feinstein Institute is participating in a groundbreaking effort to release large amounts of genetic data on normal subjects for use by the scientific community. A key barrier to progress for many geneticists is the costs of obtaining genetic data from normal control populations to use for comparison to the genetic variation seen in people with disease.

In collaboration with the Children’s Hospital of Philadelphia, The Feinstein will release genetics data on approximately 6,000 normal volunteers. A company that designs new genetic testing technology, Illumina, Inc. will maintain the database and make it available to scientists. The data will not include personal identifiers but scientists will have information on age and ethnicity to best match their groups to study.

Terry Lynam | EurekAlert!
Further information:
http://www.nshs.edu
http://www.FeinsteinInstitute.org

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>