Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells may look malignant, not act it

25.05.2007
Call it the cellular equivalent of big glasses, a funny nose and a fake mustache.

Bone marrow stem cells attracted to the site of a cancerous growth frequently take on the outward appearance of the malignant cells around them, University of Florida researchers report in a paper to be published in the August issue of Stem Cells.

But whether that enables them to fuel cancer's ability to develop and then spread, as some scientists suspect, is not entirely clear. The findings, available early in this month's online edition of the journal, actually contest the increasingly popular theory that bone marrow stem cells seed cancer. Instead, these cells might simply look like cancer, not act like it.

"They have the same kind of surface proteins," said study author Chris Cogle, M.D., an assistant professor of medicine at the UF's College of Medicine Program in Stem Cell Biology and Regenerative Medicine. "They have the same skin. The next question is 'Do they have the same guts"'

"Our results indicate these cells act as developmental mimics; they come in and look like the surrounding neoplastic tissue, but they aren't actually the seed of cancer," said Cogle, who also is affiliated with the UF Shands Cancer Center. "At the worst, these cells could help support cancerous tissue by providing it with growth factors or proteins that help the cancer grow and survive. At the very least, these marrow cells are just being tricked into coming into the cancerous environment and then made to walk and talk like they don't usually do."

The researchers have coined the term "developmental mimicry" to describe the phenomenon, which could have implications for the integrity of the cell lines scientists use to test new cancer drugs in the lab.

Up to 5 percent of cancerous tissue contains marrow-derived cells that look just like surrounding cancer. So when malignant tissue is grown in the laboratory for experiments that test the effects of new drugs, it's possible the results are muddied, Cogle said. Drugs, if effective, may be targeting the marrow cell mimics, not actual cancer cells.

"If there are bone marrow cells in this cancerous tissue, these cells may actually contaminate our cancer studies and could make a difference as to whether or not investigational drugs we're testing work or don't work," he said. "The significance of this is new treatments may work in the culture dish but may not translate to the clinic or the hospital room, and for many reasons. One of the reasons could be bone marrow contamination."

In their study, UF researchers evaluated two women who underwent bone marrow transplantation and subsequently developed colonic adenomas, four women who developed skin cancer and one who developed lung cancer.

"We questioned where the cancer was coming from — was it really from the patient or could it have been from the donor bone marrow that we transplanted in the patient?" Cogle said.

Each patient received infusions of bone marrow cells from a brother or an unrelated male donor. That enabled physicians to track the transplanted cells by screening for the Y male chromosome.

They found that the cancers were mostly of female origin, but the malignant tissue often contained small areas of male marrow cells.

"This led us to question the extent the donor marrow was participating in these cancers," Cogle said. "A tumor consists of a mixed bag of cells, not just one solid same-celled block of tissue. What we're trying to study is the role of these marrow-derived cells within the neighborhood of cancer."

The researchers then studied mice who underwent bone marrow transplant and developed the same cancers as the women. When they viewed the cancerous tissues under the microscope, they found marrow cells shared outward features of the cancer cells.

Cogle said research conducted elsewhere suggests marrow cells flock to a cancerous site to help set up a blood vessel-friendly environment that feeds the tumor. The current findings, supported by grants from the National Institutes of Health and the James & Esther King Biomedical Research Program, might be an aftereffect of this supporting role, he said.

UF researchers — who collaborated with scientists from Beth Israel Medical Center at New York's Albert Einstein College of Medicine, Yale University School of Medicine, St. Francis Hospital in Indianapolis and the Penn State Milton S. Hershey Medical Center — are now analyzing whether marrow cells that look like cancer are able to spawn tumors in animals, and whether they harbor the characteristic internal genetic defects of tumor cells.

Some patients who undergo bone marrow transplant later develop secondary cancers because of the high doses of radiation and chemotherapy they receive to prepare them for the procedure, said Mariusz Ratajczak, M.D., Ph.D., director of the Stem Cell Developmental Biology Program at the University of Louisville James Graham Brown Cancer Center and a member of the journal's editorial board.

"Transplanted cells which are derived initially from the bone marrow can include a population of stem cells which can on one hand do nice things and contribute to regeneration, and on the other hand if something goes wrong, these cells can also contribute to cancer development, of course in very rare cases," Ratajczak said. "This study has very nicely shown that that possibility exists, and it actually describes a new, novel mechanism. Somehow we know these cells contribute to growing tumor. They may not initiate it but they somehow contribute by developmental mimicry to these secondary malignancies."

Melanie Fridl Ross | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>