Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic targets for neurodegenerative diseases

11.05.2007
The focus of work in the Neurosciences Department’s Neurobiology Laboratory at the University of the Basque Country’s Faculty of Medicine and Odontology is the investigation of the molecular and cellular bases of neurodegenerative illnesses – those that affect the brain and the spinal cord. Some of these neurodegenerative illnesses are well known and affect a significant part of the population, such as Alzheimer’s disease and multiple sclerosis.

Researchers at the University of the Basque Country (UPV-EHU) are studying the signals in the central nervous system - the brain and the spinal cord - that do not function well, in particular, those signals that cause the death of nerve cells. There are basically two types of cells in the central nervous system: neurones and the glial cells. Both types are sensitive to these functioning errors and both can die. In the case of Alzheimer’s disease, it is the neurones, above all, that die. However, in the case of multiple sclerosis, it is a class of glial cells – known as oligodendrocytes – that perish.

From in vitro cells to biological samples of human origin

The researchers at the Neurobiology Laboratory are investigating cells in cultures - neurones, oligodendrocytes or other cells of the nervous system -, and are trying to reproduce in vitro circumstances that are thought to be relevant in these ailments. That is to say, they are creating the conditions that cause the death of these cells, in order to determine what molecules intervene in the process – from the moment of the lethal signal to the point where the cells collapse. In this type of experimental work a series of molecules involved in the death process are identified, the aim being to come up with pharmaceutical medicines that will improve treatment.

Apart from working with in vitro cells, they are also experimenting with animals that reproduce some of the elements involved in neurodegenerative illnesses under certain conditions, i.e. sensory symptoms, motor symptoms, etc. and that can be induced in these animals. And they are examining if these substances that have proved to be interesting with the in vitro cells are also efficacious in these experimental models of the diseases.

Moreover, over the past few years they have had the opportunity to study samples of brains of patients who have died of some neurodegenerative illness, such as, for example, multiple sclerosis. The illnesses leaves a mark in these samples and, although the brain has been at a terminal stage of the illness, they can investigate to see if there are signs of alterations to the molecules similar to those observed in the experiments, both with cells and with the animals. In this way it can be determined if the molecular targets discovered experimentally are relevant or not to the neurodegenerative processes and, if they are, develop pharmaceutical medicines that can neutralise these processes or the elements that enable them to progress, the goal being to halt the process of death.

In collaboration with neurologists they have also been able to access biological samples of patients who have given their consent and donated them to research. Biological samples such as, fundamentally, blood, given that changes in blood plasma that may indicate alterations at the brain level can be identified.

In search of biological samples

All this is a dynamic process that enables clues to be found and which are, in some cases, relevant for developing pharmaceutical drugs that can halt, or at least slow down, the course of a neurodegenerative illness. Apart from finding these molecules or targets that interact with pharmaceutical medicines, in order to stop the process of progressive deterioration, substances that favour the survival of the neurones and oligodendrocytes are also sought; substances such as, for example, antioxidants, given that, in many of the neurodegenerative illnesses the cells die because oxidative stress is produced. In recent years the Neurobiology Laboratory researchers have found a number of antioxidants that put a brake on the dying process and can act as a neuroprotector. Antioxidants of natural origin that are in our diet – fruit, vegetables, and so on – and which, in some way appear to alleviate the damage cause by these illnesses.

In short, the goal is to gain more knowledge about the molecular bases of these pathologies, define therapeutic targets (molecules of the cell that recognise a pharmaceutical drug and thus respond to it) and, in the last analysis, to come up with pharmaceutical medicines that improve treatment.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=1314&hizk=I

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>