Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One membrane, many frequencies

29.03.2007
New research suggests that a thin structure in the inner ear responds to different frequencies

Modern hearing aids, though quite sophisticated, still do not faithfully reproduce sound as hearing people perceive it. New findings at the Weizmann Institute of Science shed light on a crucial mechanism for discerning different sound frequencies and thus may have implications for the design of better hearing aids.

Research by Dr. Itay Rousso of the Weizmann Institute’s Structural Biology Department, which recently appeared in the Proceedings of the National Academy of Sciences (PNAS), suggests that a thin structure in the inner ear called the tectorial membrane responds to different frequencies. This membrane communicates between the outer hair cells (which amplify sound in the form of mechanical vibrations) and the inner hair cells (which convert these mechanical vibrations to electrical signals and pass them on to the brain via the auditory nerve). If certain genes for this membrane are missing or damaged, total deafness ensues.

Rousso and research student Rachel Gueta, together with researchers at the Ben-Gurion University of the Negev, wanted to explore the mechanical properties of the tectorial membrane. Using an atomic force microscope, which probes surfaces with a fine microscopic needle, they tested the resistance of the gel-like membrane at various points to assess precisely how rigid or flexible it was. To their surprise, the scientists found that the level of rigidity varies significantly along the length of the membrane: One end of the membrane can be up to ten times more rigid than the other.

These differences occur in the part of the membrane that is in direct contact with the outer hair cells. Observation under a scanning electron microscope revealed that this variation is due to changes in the way the protein fibers are arranged: At one end, they form a flimsy, net-like structure that allows the membrane to be flexible; on the rigid side, the fibers are densely and uniformly packed.

The more rigid a tectorial membrane is, the higher the frequency at which it can vibrate. Thus, the flexible end of the membrane, which should respond to low-frequency vibration, is found near the hair cells that transmit low frequencies, and the rigid end near hair cells that transmit high ones. This spatial separation, say the scientists, translates into the ability to distinguish between sounds of different frequencies.

The new understanding of the mechanics of hearing may assist in the development of better hearing aids. Rousso, meanwhile, plans to continue exploring how variations in membrane rigidity affect hearing. He intends to test tectorial membranes under different physiological conditions to further understand how we hear such a wide range of frequencies (the highest is a thousand times the lowest), as well as to shed light on the causes of certain hearing problems.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>