Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRP liver protein induces hypertension

21.02.2007
C-Reactive Protein, widely regarded as a risk factor for hypertension and other forms of cardiovascular disease, plays a direct role in the onset of hypertension, researchers at UT Southwestern Medical Center have found.

"We have discovered that C-Reactive Protein (CRP) is not merely a marker of the risk of hypertension, it actually induces hypertension," said Dr. Wanpen Vongpatanasin, associate professor of internal medicine and lead author of the study appearing in the February issue of Circulation.

UT Southwestern researchers studied mice with an engineered gene for CRP that was under the regulation of a second gene responsive to changes in dietary carbohydrate intake. The levels of circulating CRP, which is produced by the liver, were directly manipulated by altering the mice's diets, and the effect on blood pressure was determined. In this manner the actions of CRP were segregated from the actions of other mediators of inflammation.

"We found that when we switched on the gene that causes increases in CRP, the blood pressure went up, and when we turned off the gene and CRP levels went down, the blood pressure fell. Diet changes in the control mice had no effect, indicating that the blood pressure responses were due to CRP," said Dr. Vongpatanasin. "The cause of elevated blood pressure induced by CRP was also determined."

Clinical studies over the past decade have suggested that chronically elevated levels of CRP indicate inflammation that puts an individual at risk for hypertension and other cardiovascular ailments such as hardening of the arteries.

The mice in the latest study were supersensitive to angiotensin II, which is a major circulating factor regulating blood pressure via arterial constriction. This was due to alterations in key proteins in the vascular wall that are involved with angiotensin II.

Also, the researchers discovered that the initiating mechanism is a lack of the key signaling molecule nitric oxide in the artery wall, which has multiple beneficial roles in the cardiovascular system, as well as made a connection between nitric oxide and the proteins responsible for angiotensin II activity.

"Whether these same processes are operative in humans is yet to be determined," said Dr. Vongpatanasin. "We are also pursuing follow-up studies to further understand better how CRP causes the high blood pressure in the mice."

The ultimate goal of the research is to discover how CRP interacts with molecules in the artery wall, leading to a better understanding of hypertension and pointing to new ways to treat it, Dr. Vongpatanasin said.

"We have uncovered a series of mechanisms that link a circulating factor that rises with chronic inflammation, obesity and aging to the regulation of blood pressure," said Dr. Philip Shaul, professor of pediatrics at UT Southwestern and the study's senior author. "Doing so provides a new perspective on how these conditions have a negative impact on cardiovascular health."

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>