Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental toxicants like lead, mercury target stem cells

07.02.2007
Low levels of toxic substances cause critical stem cells in the central nervous system to prematurely shut down. That is the conclusion of a study published today in the on-line journal PLoS Biology. This research, which is the first to identify a common molecular trigger for the effects of toxicant exposure, may give scientists new insights into damage caused by toxicant exposure and new methods of evaluating the safety of chemicals.

While scientists have long understood that certain chemicals like lead and mercury have adverse effects on the body, the precise molecular mechanism by which many of these substances cause harm remain uncertain. This makes it more difficult to concretely link individual toxic substances with specific diseases or determine – with greater confidence – whether or not a chemical is toxic. However, recent advances in molecular biology, genetics, and stem cell biology have provided scientists a new window onto the impact of toxic substances on the cellular and molecular level.

"Establishing the general principles underlying the effects of toxicant exposure on the body is one of the central challenges of toxicology research," said University of Rochester biomedical geneticist Mark Noble, Ph.D., senior author of the study. "We have discovered a previously unrecognized regulatory pathway on which chemically diverse toxicants converge and disrupt normal cell function."

Noble and his colleagues exposed a specific population of brain cells to low levels of lead, mercury, and paraquat, one of the most widely used herbicides in the world. These cells, called glial progenitors, are advanced-stage stem cells that are critical to the growth, development, and normal function of the central nervous system. The activity of cells is regulated by molecular pathways – or controlled chemical reactions – normally set off when substances bind to receptors on the cell's surface. Noble and his colleagues found that these compounds turned off specific sets of receptors and set into motion a molecular chain reaction that causes the cells to shut down and stop dividing.

"These toxicants are activating a normal cellular regulatory pathway, they are just activating it inappropriately," said Noble. "If this disruption occurs during critical developmental periods, like fetal growth or early childhood, it can have a significant impact. Development is a cumulative process, and the effects of even small changes in progenitor cell division and differentiation over multiple generations could have a substantial effect on an organism."

This study is an example of the ability of stem cell research to shed new light on many diseases and health problems that have heretofore been poorly understood by the medical community. Noble and his colleagues are pioneers in the field and have been involved in the discovery of several of the progenitor cells that are involved in building the central nervous system. The growing knowledge of the precise timing and role of these cells has enabled scientists to explore the molecular origin of these diseases, and the Rochester team's findings are part of a growing number of discoveries that indicate that certain developmental syndromes may be the result of disruption in stem cell function.

There are tens of thousands of synthetic industrial chemicals, pesticides, metals, and other substances for which toxicological information is limited or nonexistent. By identifying a molecular target that is shared by toxic substances, all with very different chemical compositions, this discovery may give scientists a method to rapidly evaluate compounds to determine whether or not they pose a potential health threat.

"One of the obstacles in the analysis of new chemicals is the difficulty in developing a system that is sensitive enough and can make predictions that are true for both individual cells and the entire organism," said Noble. "This novel pathway gives as a way to analyze a diverse array of chemicals at levels in which they would be encountered in the environment. Furthermore, by identifying a specific molecular pathway that is activated by toxic exposure, we can now begin to look at specific ways to protect cells from this disruption of signaling."

Mark Michaud | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>