Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anti-malaria drug

15.02.2002


The malaria parasite multiplies in red blood cells, safe from our immune defences
© SPL


Monkey tests hint compound could paralyse malaria parasite in humans.

A new-found chemical can root out malaria parasites hiding in red blood cells and stop them reproducing. It may become a much-needed new weapon in the war against one of the world’s biggest killers.

The compound clears monkeys of infection with the human malaria parasite Plasmodium falciparum at doses far lower than existing antimalarial drugs. But testing in humans is a few years away at least, says Henri Vial at Montpellier University in France who discovered the 1.



Developing new antimalarials is essential: malaria kills more than one million people each year, and the parasites are becoming resistant to existing drugs.

Malaria parasites enter our blood when the mosquitoes that carry them bite us. The parasites multiply inside red blood cells, safe from the body’s immune system.

Vial’s team developed a range of compounds that interfere with the building of cell membranes. Rapidly reproducing parasites are constantly making new cell membranes.

They used infected human blood samples to screen all their chemicals for antimalarial activity. A compound with the working name G25 came out on top.

"We were very lucky," says Vial: G25 only enters red-blood cells that harbour reproducing malaria parasites. Why is a mystery, and "the focus of our research now", Vial says.

This selectivity is important for two reasons. First, because all animal cells make membranes, G25 would be highly toxic if it were less discerning. More importantly, scientists could exploit the chemical’s nose for malaria-infected cells to deliver other antimalarial compounds. "It is a natural targeting mechanism," Vial says.

"No other group of drugs works like this," says Peter Winstanley, who is developing new antimalarial drugs at the University of Liverpool in England. As a result, he hopes G25 could kill even drug-resistant malaria.

But because G25 acts on a fundamental biological system there could be harmful side-effects. Vial’s team saw nothing untoward in monkeys, but admits more work on the safety of the compound is needed.

Another big hurdle is getting the compound into pill form. Currently it has to be injected. "We do have problems with oral absorption," says Vial. Chemical tweaking of G25 should help.

Scientific obstacles aside, new malaria drugs face an uphill economic struggle, cautions Winstanley. To save the most lives, malaria drugs must be affordable for developing countries where the disease is endemic. Keeping development costs low enough to achieve this is hard.

The newest antimalarial drug on the market costs $57 for a course of treatment. For the developing world "it would need to cost a lot less than 50 cents", Winstanley says.

References

  1. Wengelnik, K. et al. A class of potent antimalarials and their specific accumulation on infected erythrocytes. Science, 295, 1311 - 1314, (2002).

TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-11.html

More articles from Health and Medicine:

nachricht New combination therapy established as safe and effective for prostate cancer
26.06.2019 | Society of Nuclear Medicine and Molecular Imaging

nachricht Novel model for studying intestinal parasite could advance vaccine development
26.06.2019 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>