Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation biomaterials to help body heal itself

08.02.2002


The next generation of biomaterials will help the body heal itself by prompting cells to repair their own tissues, scientists report today.



Writing in a review in the journal Science, Professors Larry Hench and Julia Polak of Imperial College, London, highlight the potential of `third generation` biomaterials that activate specific cells and genes of the individual they are implanted into.

Pioneering work by the two authors recently led to the discovery of a family of bone formation genes that can be regulated by bioactive materials. This discovery is already being used to create a new generation of biomaterials for regeneration and repair of tissue.


The authors also signal a new era in biomaterials, calling for research emphasis to shift from replacement to regeneration of tissues.

Professor Hench, discoverer of Bioglass (R) and author of a 1980 Science review of the field, said:

"The advantage of the new approach is that the body`s own genes control the tissue repair process. The result is equivalent to natural tissues in that the new structure is living and adaptable to the physiological environment. It is the scientific basis for us to design a new generation of gene-activating biomaterials tailored for specific patients and disease states."

In the last two years a group at Imperial College Tissue Engineering Centre headed by Professor Polak has analysed how human cells behave when they are attached to scaffolds of a specific bioactive material.

They demonstrated that key genes of bone cells involved in bone formation are activated when a bioactive material designed and configured for the purpose of bone formation is brought together with it. At the same time other genes, normally activated when fat or other tissues are formed, were down regulated.

"In the future we may only need to implant the carefully calculated chemical ingredients of the biomaterial, rather than a `finished` biomaterial itself, in order to repair tissue," said Professor Hench.

"By designing these very specific molecular scaffolds for repair of tissues and using minimally invasive surgery to implant them, this technique could have a major clinical application."

"Perhaps of even more importance is the possibility that bioactive stimuli can be used to activate genes in a preventative treatment to maintain the health of tissues as they age," he said.

Their review tracks the development of the field from the 1960s to the present day, in a special edition of the journal on the `Bionic Human.`

In the 1960`s and 1970`s, the first generation of biomaterials was developed for use inside the human body. A key feature of these biomaterials is their biological inertness, which minimises the body`s response to the foreign body. The authors estimate that tens of millions of individuals have had their quality of life enhanced for 5 to 25 years through such implants.

In 1984 a major shift began with a second generation of materials that become activated in a controlled way when implanted in the body. `Bioactive` materials such as glasses, ceramics and composites have since been used in a variety of orthopaedic and dental applications. `Resorbable` biomaterials that are slowly broken down and replaced by regenerating tissues appeared at the same time.

However the authors state that survivability rates of skeletal prostheses and artificial heart valves show that a third to half of prostheses fail within 10-25 years, meaning that many patients require revision surgery.

The article is one of 9 reports on the topic `Bodybuilding: The Bionic Human`, covered in Science this week.


For more information please contact:

Professor Larry Hench
Department of Materials and Imperial College Tissue Engineering Centre
Tel: +44 (0)20 7594 6745
Email: l.hench@ic.ac.uk

Professor Julia Polak
Imperial College Tissue Engineering Centre
Tel: +44 (0)20 8237 2670
Email: julia.polak@ic.ac.uk

Tom Miller
Imperial College Press Office
Tel: +44 (0)20 7594 6704
Mob: +44 (0)7803 886248
Email: t.miller@ic.ac.uk

Tom Miller | alphagalileo

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>