Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic back pain linked to changes in the brain

30.11.2006
A German research team using a specialized imaging technique revealed that individuals suffering from chronic low back pain also had microstructural changes in their brains. The findings were presented today at the annual meeting of the Radiological Society of North America (RSNA).

The researchers, led by Jürgen Lutz, M.D., a radiology resident at University Hospital, Ludwig-Maximilians University in Munich, Germany, used a technique called diffusion tensor imaging (DTI) to track the movement of water molecules in the brain’s gray and white matter.

“A major problem for patients with chronic pain is making their condition believable to doctors, relatives and insurance carriers. DTI could play an important role in this regard,” Dr. Lutz said. “With these objective and reproducible correlates in brain imaging, chronic pain may no longer be a subjective experience. For pain diagnosis and treatment, the consequences could be enormous.”

Individual water molecules are constantly in motion, colliding with each other and other nearby molecules, causing them to spread out, or diffuse. DTI allows scientists to analyze water diffusion in the tissues of the brain that indicate changes in brain cell organization.

“In normal white matter, water diffuses in one main direction,” Dr. Lutz explained. “But when fiber pathways are developing during childhood or are extensively used, their microstructural organization becomes more organized and complex with measurable changes in diffusion.”

Dr. Lutz and colleagues studied 20 patients experiencing chronic back pain with no precisely identifiable cause and 20 age- and gender-matched healthy control patients. DTI was performed to measure the diffusion in several areas of each patient’s brain.

Compared to the healthy volunteers, the patients with chronic low back pain had a significantly more directed diffusion in the three pain-processing regions of the brain, including the cingulate gyrus, postcentral gyrus and superior frontal gyrus.

“Our results reveal that in chronic pain sufferers, the organization of cerebral microstructure is much more complex and active in the areas of the brain involved in pain processing, emotion and the stress response,” said co-author Gustav Schelling, M.D., Ph.D. from the Department of Anaesthesiology at Munich University.

The researchers said the findings may help explain the extreme resistance to treatment for chronic low back pain and provide much-needed evidence for individual sufferers. However, it is unclear which occurs first, the chronic back pain or the microstructural changes in the brain.

“It’s difficult to know whether these are pre-existing changes in the brain that predispose an individual to developing chronic pain, whether ongoing pain creates the hyperactivity that actually changes the brain organization, or if it is some mixture of both,” Dr. Schelling said. “DTI may help explain what’s happening for some of these patients, and direct therapeutic attention from the spine to the brain,” he added.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>