Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc plays important role in brain circuitry

24.11.2006
To the multitude of substances that regulate neuronal signaling in the brain and spinal cord add a new key player: zinc.

By engineering a mouse with a mutation affecting a neuronal zinc target, researchers have demonstrated a central role for zinc in modulating signaling among the neurons. Significantly, they found the mutant mouse shows the same exaggerated response to noise as children with the genetic disorder called "startle disease," or hyperekplexia.

The findings shed light on a nagging mystery in neurobiology: why the connections among certain types of neurons contain considerable pools of free zinc ions. And even though many studies had shown that zinc can act toxically on transmission of neural impulses, half a century of experiment researchers had not been able to show conclusively that the metal plays a role in normal nerve cell transmission.

However, in an article in the November 22, 2006, issue of the journal Neuron, published by Cell Press, Heinrich Betz and colleagues conclusively demonstrate just such a role for zinc.

In their experiments, the researchers produced mice harboring a mutant form of a gene for a receptor for zinc in neurons--thereby compromising the neurons' ability to respond to zinc. The mutation in the receptor, called the glycine receptor, targets the same receptor known to be mutated in humans with hyperekplexia. The receptor functions as a modulator of neurons in both motor and sensory signaling pathways in the brain and spinal cord.

The genetic approach used by the researchers was a more targeted technique than previous experiments in which researchers reduced overall neuronal zinc levels using chemicals called chelators that soak up zinc ions.

The resulting mutant mice showed tremors, delayed ability to right themselves when turned over, abnormal gait, altered transmission of visual signals, and an enhanced startle response to sudden noise.

Electrophysiological studies of the mutant animals' brain and spinal neurons showed significant zinc-related abnormalities in transmission of signals at the connections, called synapses, among neurons.

Betz and his colleagues wrote that "The data presented in our paper disclose a pivotal role of ambient synaptic [zinc ion] for glycinergic neurotransmission in the context of normal animal behavior." They also concluded that their results implied that manipulating synaptic zinc levels could affect the neuronal action of zinc, but that such manipulation "highlights the complexity of potential therapeutic interventions," which could cause an imbalance between the excitatory and inhibitory circuitry in the central nervous system.

In a preview of the paper in the same issue of Neuron, Alan R. Kay, Jacques Neyton, and Pierre Paoletti wrote "Undoubtedly this work is important, since it directly demonstrates that zinc acts as an endogenous modulator of synaptic transmission." They wrote that the findings "will certainly revive the flagging hopes of zincologists. This work provides a clear demonstration that interfering with zinc modulation of a synaptic pathway leads to a significant alteration in the phenotype of the animal." The three scientists added that the finding "puts a nice dent in the zinc armor, which held firm for more than 50 years."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>