Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can we prevent type 1 Diabetes by modifying infant nutrition?

20.11.2006
Type 1 diabetes is a growing health problem among European children. European data indicate that the disease incidence has increased five- to six-fold among children under the age of 15 years after World War II, and there are no signs that the increase in incidence is levelling off.

The most conspicuous increase has been seen among children under the age of 5 years. The EU-funded Diabetes Prevention study is generating a wealth of information on breast-feeding practices, infant nutrition and growth in young children in various countries. Newborn infants observed in Northern Europe (NE) had a higher birth weight but a shorter birth length than infants in Central and Southern Europe (CSE).

The NE children remained heavier than those from CSE at least up to the age of 18 months. The NE children were also taller than the CSE children starting already from the age of 3 months up to the age of 18 months. Accelerated growth in infancy has been identified as a risk factor for type 1 diabetes later in childhood. Accordingly the observed growth pattern may contribute to the higher incidence of type 1 diabetes in NE compared to CSE.

Within the next 10 years the Diabetes Prevention study will generate a definite answer to the question whether early nutritional modification may prevent type 1 diabetes later in childhood. A reduction of 50% in the incidence of type 1 diabetes would have a substantial impact on the quality of life of many European families and would reduce future health care costs considerably in every European country.

The Diabetes Prevention study is the first study ever aimed at primary prevention of type 1 diabetes. The study is designed to provide an answer to the question whether weaning to a highly hydrolysed formula in infancy decreases the risk of future diabetes. All subjects are observed for 10 years to gain information on whether the dietary recommendations for infants at increased genetic risk of type 1 diabetes should be revised.

Starting in May 2002, 76 study centres from 15 countries (Australia, Canada, the Czech Republic, Estonia, Finland, Germany, Hungary, Italy, Luxembourg, the Netherlands, Poland, Spain, Sweden, Switzerland and USA) have been recruiting families for the Diabetes Prevention study. To be eligible the newborn infant has to have at least one family member (mother, father and/or sib) affected by type 1 diabetes and carry a HLA genotype conferring increased risk for type 1 diabetes. The initial recruitment target of 2032 eligible infants was reached at the beginning of September 2006, but the Study Group has decided to continue recruitment till the end of December 2006 (when the EU contribution will finish) to make the study even more powerful statistically. A majority of the study participants (52%) have been recruited in Europe. The International Coordinating Centre (ICC) is located at the University of Helsinki, Helsinki, Finland and the Data Management Unit (DMU) at the University of South Florida, Tampa, Florida, USA. The trial has logistically been a true challenge for both the ICC and DMU. DMU has been successful in establishing a secure, real-time, web-based, interactive data management system that works extremely well. This system can be directly applied to future international multicentre studies.

The Diabetes Prevention study, funded by the EU, is part of the international TRIGR (Trial to Reduce IDDM in the Genetically at Risk) study.
Coordinator: University of Helsinki, Helsinki, Finland
Principal Investigator: Professor Hans K. Åkerblom, e-mail: hans.akerblom@helsinki.fi, phone +358 50 461 8679

Deputy Principal Investigator: Professor Mikael Knip, e-mail: mikael.knip@helsinki.fi, phone: +358 40 844 7671

Michael H Wappelhorst | alfa
Further information:
http://www.trigr.org
http://www.ec.europa.eu/research/press/press.cfm

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>