Can we prevent type 1 Diabetes by modifying infant nutrition?

The most conspicuous increase has been seen among children under the age of 5 years. The EU-funded Diabetes Prevention study is generating a wealth of information on breast-feeding practices, infant nutrition and growth in young children in various countries. Newborn infants observed in Northern Europe (NE) had a higher birth weight but a shorter birth length than infants in Central and Southern Europe (CSE).

The NE children remained heavier than those from CSE at least up to the age of 18 months. The NE children were also taller than the CSE children starting already from the age of 3 months up to the age of 18 months. Accelerated growth in infancy has been identified as a risk factor for type 1 diabetes later in childhood. Accordingly the observed growth pattern may contribute to the higher incidence of type 1 diabetes in NE compared to CSE.

Within the next 10 years the Diabetes Prevention study will generate a definite answer to the question whether early nutritional modification may prevent type 1 diabetes later in childhood. A reduction of 50% in the incidence of type 1 diabetes would have a substantial impact on the quality of life of many European families and would reduce future health care costs considerably in every European country.

The Diabetes Prevention study is the first study ever aimed at primary prevention of type 1 diabetes. The study is designed to provide an answer to the question whether weaning to a highly hydrolysed formula in infancy decreases the risk of future diabetes. All subjects are observed for 10 years to gain information on whether the dietary recommendations for infants at increased genetic risk of type 1 diabetes should be revised.

Starting in May 2002, 76 study centres from 15 countries (Australia, Canada, the Czech Republic, Estonia, Finland, Germany, Hungary, Italy, Luxembourg, the Netherlands, Poland, Spain, Sweden, Switzerland and USA) have been recruiting families for the Diabetes Prevention study. To be eligible the newborn infant has to have at least one family member (mother, father and/or sib) affected by type 1 diabetes and carry a HLA genotype conferring increased risk for type 1 diabetes. The initial recruitment target of 2032 eligible infants was reached at the beginning of September 2006, but the Study Group has decided to continue recruitment till the end of December 2006 (when the EU contribution will finish) to make the study even more powerful statistically. A majority of the study participants (52%) have been recruited in Europe. The International Coordinating Centre (ICC) is located at the University of Helsinki, Helsinki, Finland and the Data Management Unit (DMU) at the University of South Florida, Tampa, Florida, USA. The trial has logistically been a true challenge for both the ICC and DMU. DMU has been successful in establishing a secure, real-time, web-based, interactive data management system that works extremely well. This system can be directly applied to future international multicentre studies.

The Diabetes Prevention study, funded by the EU, is part of the international TRIGR (Trial to Reduce IDDM in the Genetically at Risk) study.
Coordinator: University of Helsinki, Helsinki, Finland
Principal Investigator: Professor Hans K. Åkerblom, e-mail: hans.akerblom@helsinki.fi, phone +358 50 461 8679

Deputy Principal Investigator: Professor Mikael Knip, e-mail: mikael.knip@helsinki.fi, phone: +358 40 844 7671

Media Contact

Michael H Wappelhorst alfa

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors