Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Without training in orbit capillaries can be lost

04.10.2006
The cosmonauts in orbit should not neglect physical training. Otherwise, they are threatened with atrophy of capillaries in muscles.

Specialists of the pathologic laboratory of the Research Institute of General Pathology and Pathophysiology (Russian Academy of Medical Sciences), who have discovered this fact with rats, point out that this is a temporary disorder. On the Earth, blood vessels grow up again but their regeneration takes much more time than their ruining.

Subject of inquiry was laboratory rats that stayed on board the SLS-2 satellite (Spacelab Life Sciences, USA). The researchers used for analysis the muscles lifting up the rat’s pollex. The muscular tissue samples were taken in orbit on the 14th day of the flight, and on the 1st and the 14th day after return to the Earth. Ultrastructural investigation has shown that all rats had disrupted cellular wall integrity, vascular permeability and microcirculation in the muscles. Considerable part of capillaries was irreversibly injured. The cells forming the vascular wall perished, arterial and venous capillary lumens are occupied by cytoplasm from destroyed cells and by collagen fibrils. Small lymphatic vessels look no better.

In the state of weightlessness, skeletal muscles are relaxed (at any case, muscles of rats, which, in contrast to human beings, are not trained to make special exercises). Without load, muscle fibers gradually mortify, and after than the capillaries feeding them get destroyed and mortify. Half-ruined arterioles are unable to supply muscles with oxygen, but venules and lymphatic vessels are permorming drainage functions. The remaining capillaries do not provide for normal microcirculation, therefore, the remaining muscles suffer from edema and hypoxia, and this in its turn provokes further destruction of the smallest blood vessels.

Capillaries also suffer from physical factors, acceleration and weightlessness, which probably impact the cellular membrane permeability and results in necrosis of the cells lining the vessel walls. The cells get lost very quickly and are not replaced by new ones as it happens in case of microvessel necrosis under some diseases, for example, diabetes or after a trauma.

In the researchers’ opinion, one of the reasons for quick capillary injury in outer space is that the animals are not trained. Training helps the cells to promptly adapt themselves to overload and weightlessness conditions and enables their “adaptation reserve” required to overcome overload, but untrained cells have no time to do that.

After return to the Earth, new capillaries are gradually formed in the rat’s muscle. However, their regeneration requires much more time than destruction. Even after two weeks in gravitation conditions, the researchers still observed destroyed microvessels in the muscles.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>