Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule helps cells plug leaks following lung injury

18.09.2006
Researchers at the University of Illinois at Chicago College of Medicine have identified a molecule that plays a critical role in the recovery of lung tissue following severe injury.

The study appeared in the Sept. 1 issue of the Journal of Clinical Investigation.

In acute lung injury -- usually resulting from infection, inflammation or surgical trauma -- cells that line the blood vessels in the lung lose their ability to form a barrier, allowing fluid to seep into the lung's air spaces and resulting in respiratory failure. Such damage is a significant cause of death in critically ill patients.

Very little is known about how the lung repairs this lining layer, called the endothelium, said You-Yang Zhao, research assistant professor of pharmacology.

"We thought it likely that the ability of cells to repair and restore the endothelium might depend on their ability to proliferate and fill in gaps in the endothelial monolayer barrier that allow leaking," said Zhao, who is lead author of the study.

Earlier studies had shown that FoxM1, a protein that controls the expression of genes, plays a critical role in cell proliferation. Working with the late Robert Costa, professor of biochemistry and molecular genetics at UIC, whose research focused on FoxM1, the researchers developed a mouse model that lacked the FoxM1 gene only in endothelial cells.

In the study, lung injury was induced in normal mice and in the gene-deleted mice. Blood vessels in the FoxM1-deficient mice continued to leak fluid, and the mice were significantly less likely to recover, resulting in a seven-times-greater mortality rate.

Although the immune response of each group was similar, there was less endothelial cell proliferation in the gene-deficient mice after the injury, suggesting that inability to fill the gaps in the barrier with new cell growth impaired the ability to recover.

Asrar Malik, professor and head of pharmacology at UIC, says the results suggest that lung injury activates a repair program, mediated by FoxM1, that encourages cell growth and restores the barrier integrity.

"This suggests future therapies for acute lung injury that target this molecule could promote endothelial regeneration and the patient's recovery," said Malik, who is senior author of the paper.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>