Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS vaccine delivers

17.01.2002


The HIV virus: killing cells laden with these particles may form a key part of future AIDS vaccination strategies.
© SPL


Cellular attack tactic keeps virus at bay.

A new AIDS vaccine could be one of the most promising yet. The drug’s effects in monkeys suggest that killing virus-laden cells may form a key part of future vaccination strategies.

Vaccinated monkeys survived a usually lethal infection with a monkey-human hybrid virus, SHIV. Their primed immune system kept virus levels below detection, Emilio Emini of Merck Research Laboratories in West Point, Pennsylvania, and his team now report1. The results are some of the most encouraging to come out of AIDS vaccine research.



But doubts have already been voiced. Low-lying virus can change to elude the immune response, argue Dan Barouch of Harvard Medical School in Boston and his team. A year after they gave eight animals a similar vaccination, a mutant form of the virus emerged, killing one of the monkeys2.

"This finding should be a reality check rather than a death knell," Barouch says, adding that the technique can be modified to block the emergence of mutant viruses. Future attempts could hit several different SIV proteins to prevent the virus escaping. Both of the latest vaccines targeted a single protein.

Emini is already pursuing this goal. But like multi-drug-resistant bacteria, HIV could conceivably outwit even a broadly targeted vaccine, although this is less likely. Whether the vaccines tested in the monkeys will be as effective in humans, however, is unknown.

Troubled history

AIDS is notoriously difficult to vaccinate against. Initial attempts took a conventional approach by injecting a single HIV surface protein to trigger the animals’ immune system into producing antibodies that would attack the virus during a subsequent infection. But HIV evades antibodies by hiding the proteins that the antibodies latch onto and by evolving new strains.

"HIV turned out to be much more complicated," says vaccine researcher Jeffrey Lifson of the National Cancer Institute at Frederick, Maryland. In the past few years, vaccine hunters have switched to a different tack that simulates the way the body naturally attempts to deal with HIV infection - namely, stimulating the immune system to strike virus-infected cells.

Emini’s team achieved this by using a harmless virus to deliver SIV DNA direct to specific immune cells. "It looks encouraging," says Lifson.

Unfortunately, as with any vaccine that keeps virus levels in check, rather than preventing infection, there is the risk that the pathogen will re-emerge. "It’s an ominous question to ask about the whole strategy," comments Lifson. Nonetheless, such a vaccine could in theory defer the onset of AIDS and cut the risk of HIV spreading.

The antibody approach may still bear fruit if it can hit essential, unchanging parts of the virus. Meanwhile, the ultimate ideal remains a vaccine that triggers both arms of the immune system - antibodies and cell attack.

References

  1. Shiver, J. W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 415, 331 - 335, (2002).
  2. Barouch, D. H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature, 415, 335 - 339, (2002).

HELEN PEARSON | © Nature News Service

More articles from Health and Medicine:

nachricht Candidate Ebola vaccine still effective when highly diluted, macaque study finds
21.10.2019 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Autism spectrum disorder risk linked to insufficient placental steroid
21.10.2019 | Children's National Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>