Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS vaccine delivers

17.01.2002


The HIV virus: killing cells laden with these particles may form a key part of future AIDS vaccination strategies.
© SPL


Cellular attack tactic keeps virus at bay.

A new AIDS vaccine could be one of the most promising yet. The drug’s effects in monkeys suggest that killing virus-laden cells may form a key part of future vaccination strategies.

Vaccinated monkeys survived a usually lethal infection with a monkey-human hybrid virus, SHIV. Their primed immune system kept virus levels below detection, Emilio Emini of Merck Research Laboratories in West Point, Pennsylvania, and his team now report1. The results are some of the most encouraging to come out of AIDS vaccine research.



But doubts have already been voiced. Low-lying virus can change to elude the immune response, argue Dan Barouch of Harvard Medical School in Boston and his team. A year after they gave eight animals a similar vaccination, a mutant form of the virus emerged, killing one of the monkeys2.

"This finding should be a reality check rather than a death knell," Barouch says, adding that the technique can be modified to block the emergence of mutant viruses. Future attempts could hit several different SIV proteins to prevent the virus escaping. Both of the latest vaccines targeted a single protein.

Emini is already pursuing this goal. But like multi-drug-resistant bacteria, HIV could conceivably outwit even a broadly targeted vaccine, although this is less likely. Whether the vaccines tested in the monkeys will be as effective in humans, however, is unknown.

Troubled history

AIDS is notoriously difficult to vaccinate against. Initial attempts took a conventional approach by injecting a single HIV surface protein to trigger the animals’ immune system into producing antibodies that would attack the virus during a subsequent infection. But HIV evades antibodies by hiding the proteins that the antibodies latch onto and by evolving new strains.

"HIV turned out to be much more complicated," says vaccine researcher Jeffrey Lifson of the National Cancer Institute at Frederick, Maryland. In the past few years, vaccine hunters have switched to a different tack that simulates the way the body naturally attempts to deal with HIV infection - namely, stimulating the immune system to strike virus-infected cells.

Emini’s team achieved this by using a harmless virus to deliver SIV DNA direct to specific immune cells. "It looks encouraging," says Lifson.

Unfortunately, as with any vaccine that keeps virus levels in check, rather than preventing infection, there is the risk that the pathogen will re-emerge. "It’s an ominous question to ask about the whole strategy," comments Lifson. Nonetheless, such a vaccine could in theory defer the onset of AIDS and cut the risk of HIV spreading.

The antibody approach may still bear fruit if it can hit essential, unchanging parts of the virus. Meanwhile, the ultimate ideal remains a vaccine that triggers both arms of the immune system - antibodies and cell attack.

References

  1. Shiver, J. W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature, 415, 331 - 335, (2002).
  2. Barouch, D. H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature, 415, 335 - 339, (2002).

HELEN PEARSON | © Nature News Service

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>