Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appetite – it’s a brain thing

08.09.2006
The regulation of body weight and energy balance in animals depends on the central nervous system capacity to read the body’s metabolic state and respond accordingly.

But how does the brain process and integrate information to regulate feeding behaviour in order to sustain the energetic needs of the organism? In an article now published on the journal "Neuron", scientists from the US and Portugal study the brain activity of rats during a feeding cycle - consisting of an episode of hunger, satiety and hunger again - and found that, while individual neurons respond to parts of the cycle, the pooled activity of the neurons in entire brain areas is always high throughout hunger, diminishing after the animal is fed and satiated, and again increases when the animal is hungry again, a variation that most probably underlies the activation of the mechanism associated with feeding motivation in these animals.

For survival, the individuals of a species have to carry vital functions such as eating, drinking, having sex or present maternal behaviour. To assure this happens, during evolution, certain areas in the brain have developed to provide strong feelings of pleasure as a “reward” for carrying out these vital functions.

A typical example is the motivation to eat, which is balanced between states of hunger - when eating is accompanied by a sensation of pleasure - and satiation - when the brain senses a biochemical change and stops the feeding process.

Previous research has shown that, during hunger, several areas in the brain seem to show increased neural activity which, after eating, is reduced. These experiments, however, were limited because, on one hand the animals were never allowed to eat freely as the food was controlled by the scientist, and on the other hand a whole cycle of hunger, satiety and new episode of hunger was never fully studied.

Trying to understand better the brain process that leads to the motivation to start and end the feeding process Ivan E. de Araujo, Sidney A. Simon and colleagues at Duke University Medical Center in North Carolina, US and at Porto University, Portugal decided to look at rats’ brain activity in a more ”natural” experimental situation – the animals were allowed to decide when to start and end eating, and their brains were analysed throughout entire hunger-satiety-hunger cycles.

The researchers measured neural activity in four brain areas known to be associated with feeding motivation - lateral hypothalamus, orbitofrontal complex, basolateral amygdale and insular cortex - during a full feeding cycle in which the rats were hungry, fed on sugary water until satiated and then grew hungry again. The activity of individual neurons within these areas was also analysed. The levels of glucose and insulin in the blood were also measured during the experiments.

By correlating the different stages of feeding (hunger - satiety –hunger) with brain activity, the researchers found that the majority of individual neurons only responded to a particular metabolic state (for example low or high glucose levels but not to both) within the full feeding cycle. By contrast, the whole activity of any of the four brain areas analysed, consistently increase during the hunger episodes and decrease during satiety allowing an accurate prediction of the duration, start and end of the different stages. These results show that the mechanism regulating feed motivation is distributed across different brain areas, forming a connected circuit that shares information on sensorial and motivational aspects of feeding collected from a multitude of individual neurons.

Araujo, Simon and colleagues also found that, from the four brain areas studied, lateral hypothalamus seemed to be the most important for eating motivation, as its neural activity had the highest correlation with the changes within the feeding cycle. This result agrees with previous observations where single lesions in this brain area can automatically lead to radical changes in appetite whether leading to hyperphagia – abnormally high food intake or, hypophagia- reduced food intake. This research contributes to a better understanding of the brain mechanic behind feeding stimulus, a particularly important issue in view of the current world epidemic of obesity.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.neuron.org/content/article/abstract?uid=PIIS0896627306005496

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>