Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings could lead to vaccine for severe malaria

01.09.2006
The most severe form of malaria hits pregnant women and children the hardest. A joint study between Karolinska Institutet in Sweden and Makerere University in Uganda has now produced some important findings on how the malaria parasite conceals itself in the placenta.

Plasmodium falciparium is the name of by far the most virulent of the four malaria parasites that infect man. It is particularly dangerous in that it also infects the placenta of pregnant women, with fatal consequences for both her and the foetus. This, combined with the often feeble medical resources of malaria-stricken countries, can lead to such serous complications that the mother dies during delivery.

“For some reason, women in their first pregnancy lose the semi-immunity that is normally found in adults,” explains Niloofar Rasti, a KI graduate student who has been working with the study. “The placenta seems to be an anatomically favourable environment for a subpopulation of the parasites.”

The research group from Karolinska Institutet, under the leadership of Professor Mats Wahlgren, has been working with colleagues from KI’s partner university in Uganda to study in detail how the parasite infects the placenta. Their results, which are published in the American scientific journal PNAS, can enable the development of vaccines and therapies to combat severe malarial infections.

During one particular phase of its lifecycle, the parasite enters human red blood cells, where it produces proteins that attach themselves to receptors in the wall of the blood vessels. This causes the red blood cells to accumulate in organ capillaries, and gives rise to life-threatening symptoms. Adults who have been infected several times can become partly immune as their defence system gradually starts to recognise the parasite’s proteins. When the placenta is formed, however, a new environment is introduced with a different set of receptors. This means that a new growth niche is made available to a subpopulation of the parasites.

Earlier studies have suggested that each protein from the parasite attaches to only one specific protein, a receptor, in the placenta. Ms Rasti and her colleagues suspected, however, that the natural mechanisms are more complex than laboratory studies have shown. They therefore collected and analysed placentas on site in Uganda.

“Most of the parasites we studied could bind to three different receptors in the placenta,” she says. “This would mean that a future vaccine cannot be based on the principle of one protein-one receptor, as was previously believed.”

Now that scientists know that several placental receptors are involved in the binding mechanism, attention will be shifted to the parasite itself, and whether it produces many different surface proteins or if one and the same protein is able to bind to many host receptors.

Katarina Sternudd | alfa
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>