Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for Hepatitis C research

11.08.2006
The mystery surrounding Hepatitis C, a disease that affects millions of people worldwide, is one step closer to being solved.

In a paper published in the August edition of Journal of Virology, scientists describe how they replicated, or reproduced the hepatitis C virus (HCV) in mouse cells. Working with different models, they showed a gene called protein kinase R (PKR) blocked the replication of HCV in mice.

"When a person becomes infected with HCV, the immune system produces a protein called interferon to fight the infection," said co-author and Director of the Monash Institute of Medical Research, Professor Bryan Williams.

"We now know genes interferon stimulates PKR to try to stop the virus spreading throughout the body."

HCV replicates at a very high rate – approximately one trillion viral particles are produced each day in an infected person. Professor Williams' research will provide a better understanding of how this replication occurs and how and why PKR blocks the production of the virus.

Hepatitis C affects 210,000 Australians. Worldwide, it is estimated more than 170 million people suffer from the disease. The virus attacks the liver, causing flu-like symptoms, fevers, abdominal pain, depression, and for two-thirds of patients, chronic liver disease.

The discovery may also shed light on why some hepatitis C patients respond better to treatment than others.

"As there is no vaccine or cure for HCV, the only treatment on offer for patients is interferon therapy, which aims to slow the progression of the disease. However, there are six different genotypes, or strains of HCV, which all react differently to treatment," Professor Williams said.

"We can now explore why some strains are more sensitive to interferon therapy, and how we can adapt treatment to the different strains of the disease."

"Our research is still in the early stages, but the research model we have created will be a valuable tool in understanding the underlying mechanisms of chronic HCV infection, and how the virus responds to interferon treatment" said Professor Williams.

Julie Jacobs | EurekAlert!
Further information:
http://www.researchaustralia.com.au/
http://www.hepcvic.org.au
http://jvi.asm.org/current.dtl#VIRUS_CELL_INTERACTIONS

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>