Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding paves way for better treatment of autoimmune disease

10.08.2006
A signaling molecule with an affinity for alcohol has yielded a rapid, inexpensive way to make large numbers of immune cells that work like beat cops to keep misguided cells from attacking the body.

The ability to easily make large numbers of these cells opens the door to improved treatment and a better understanding of autoimmune diseases such as type1 diabetes and arthritis, Medical College of Georgia researchers say.

T cells are components of the immune system designed to attack invaders such as bacteria and viruses; regulatory T cells are a small subset that prevents the cells from also attacking body tissue.

Research published in the August issue of Nature Methods shows that, given the option, phospholipase D, which typically mixes with water, prefers alcohol. It’s an apparently lethal choice for the signaling molecule that, in turn, also kills T cells that need phospholipase D to survive. Previously, it was unknown whether regulatory T cells required the molecule.

“What we have found is that if you block this enzyme, almost all T cells die after three days but the regulatory T cells can survive,” says Dr. Makio Iwashima, MCG immunologist and the study’s corresponding author. “After three days, we give them some food to grow and, in one week, you get about 90 percent pure regulatory cells.”

The approach worked with laboratory-grade alcohol, called butanol, as well as beverage-grade ethanol.

Normally, regulatory T cells constitute about 2-5 percent of all T cells, Dr. Iwashima says. Isolating them is doable but a long, expensive process.

When researchers gave some of the regulatory T cells to a mouse model of inflammatory bowel disease, the symptoms, including dramatic weight loss, went away. Animals showed no classic signs of inflammation, just a significant increase in regulatory cells.

MCG researchers have obtained funding from the Arthritis Foundation and the Juvenile Diabetes Research Foundation to see if the cell therapy will work as well in animal models for arthritis and type 1diabetes.

“Our prediction and our hope is that we can restore balance,” says Dr. Iwashima. The usual 5- to 95-percent ratio of regulatory cells to non-regulatory T cells is lost in those with autoimmune disease, he says. However, too many regulatory cells also can be a problem, he says, noting that cancer patients have higher levels of regulatory cells.

Regulatory T cell therapy also resolved symptoms in a model of graft versus host disease, a problem for some bone marrow transplant patients when immune cells from the donor start attacking. This finding indicates a potential role for helping transplant patients keep new organs, the researchers say.

Dr. Iwashima has an Alcoholic Beverage Medical Research Foundation grant to pursue alcohol’s potential for helping isolate desirous regulatory cells. However, he cautions that his research findings are not a green light for patients with autoimmune disease to drink because of the negative health effects of regular alcohol consumption.

Dr. Iwashima and his colleagues believe the best way to optimize cell percentages is to do what the body does. In fact, they already are searching for an endogenous substance that interferes with phospholipase D.

“Ultimately, that is the most natural way, if we can find the compound in our bodies that can do the job,” Dr. Iwashima says. He theorizes that this natural substance helps destroy non-regulatory T cells when the body gets too many, say after fighting a big infection, and that it may not work well enough in people with autoimmune disease.

The research was supported by the National Institutes of Health.

Other contributors include lead author Dr. Nagendra Singh, postdoctoral fellow; Dr. Yoichi Seki, postdoctoral fellow; Maniko Takami, research assistant; Dr. Babak Babah, postdoctoral fellow; Dr. Phil R. Chandler, principal research scientist; Dr. Davood Khosravi, former postdoctoral fellow; Dr. Xiangjian Zheng, former graduate student; Mayuko Takezaki, research associate; Dr. Jeffrey R. Lee, associate professor; Dr. Andrew L. Mellor, director, MCG Immunotherapy Center; and Dr. Wendy B. Bollag, professor.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>