Gatekeeping: Penn researchers find new way to open ion channels in cell membranes

Using an enzyme found in the venom of the brown recluse spider, researchers at the University of Pennsylvania School of Medicine have discovered a new way to open molecular pores, called ion channels, in the membrane of cells. The research team – Zhe Lu, MD, PhD; Yajamana Ramu, PhD; and Yanping Xu, MD, PhD of the Department of Physiology at Penn – screened venoms from over 100 poisonous invertebrate species to make this discovery.

The enzyme, sphingomyelinase D (SMase D), splits a lipid called sphingomyelin that surrounds the channel embedded in the cell membrane. As a result, the channel opens to allow the passage of small ions into and out of the cell, thereby generating electrical currents.

The new study, published online earlier this month in the journal Nature, describes how SMase D opens one type of ion channel called a voltage-gated potassium channel (from brain, but experimentally expressed in the membrane of an oocyte, or egg cell) without changing the membrane voltage. The finding introduces a new paradigm for understanding the gating of ion channels and lays the conceptual groundwork for designing new drugs to control ion-channel activity in medical intervention.

Voltage-gated ion channels are embedded in the cell membranes of most types of cells. It has been known for over half a century that the channels open and close in response to changes in electric voltage across the cell membrane, hence their name. In some the cells, (commonly called “excitable”), such as nerve, muscle, heart, and hormone-secreting cells, the channels underlie electrical signaling. They selectively allow the passage of small ions such as sodium, potassium, or calcium into and out of the cell. The precisely controlled passage of ions generates the electrical currents that enable nerve impulse transmission, hormone secretion, and muscle contraction and relaxation. When there are changes to the channel, such as by mutations in a channel gene, disease can result. For example, mutations in some channel genes cause cardiac arrhythmias, including a form of the lethal long QT syndrome.

Voltage-gated ion channels are also present in the so-called non-excitable cells (such as immune, blood, and bone cells) whose membrane voltage stays largely constant, as opposed to the excitable cells whose membrane voltage constantly varies in a precisely controlled manner. How the activity of channels in non-excitable cells is regulated has been a long-standing biological mystery. This new finding that SMase D can open ion channels without changing membrane voltage provides a clue to the mystery.

Media Contact

Karen Kreeger EurekAlert!

More Information:

http://www.uphs.upenn.edu/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors