Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model of brain sheds light on triggers of autism

12.07.2006
iSTART model illustrates brain mechanisms that lead to autistic behaviors

Approximately 1.5 million children and adults in the U.S. have autism and it is estimated to be the fastest growing developmental disability with a 10 – 17 percent increase each year. While much is known about the symptoms of autism, the exact cause of the condition is not yet defined.

A new model of the brain developed by Dr. Stephen Grossberg, professor and chairman of the Department of Cognitive and Neural Systems at Boston University, and Dr. Don Seidman, a pediatrician with the DuPage Medical Group in Elmhurst, IL, sheds light on the triggers of behaviors commonly associated with autism. The paper, "Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates," appears in the July issue of the journal Psychological Review, published by the American Psychological Association.

"Autism involves multiple genes and correspondingly, people with autism are known to have multiple cognitive, emotional, and motor symptoms – such as impaired development of speech and difficulty expressing emotions," said Dr. Grossberg. "The iSTART model describes the various brain mechanisms that underlie autism and how they may give rise to the symptoms of the condition."

iSTART, which stands for Imbalanced Spectrally Timed Adaptive Resonance Theory, is derived from the earlier START model developed by Grossberg to explain how the brain controls normal behaviors. The new model describes how brain mechanisms that control normal emotional, timing, and motor processes may become imbalanced and lead to symptoms of autism. START and its imbalanced version iSTART are a combination of three models, each one of which tries to explain fundamental issues about human learning and behavior.

The first, called Adaptive Resonance Theory, or ART, proposes how the brain learns to recognize objects and events. Recognition is accomplished through interactions between perceptually-driven inputs and learned expectations. Inputs attempt to match expectations which helps prompt the brain to anticipate input/expectation patterns.

"When a match occurs, the system locks into a resonant state that drives how we learn to recognize things; hence the term adaptive resonance," explained Grossberg.

The degree of match that is required for resonance to occur is set by a vigilance parameter which controls whether a particular learned representation will be concrete or abstract. Low vigilance allows for learning of broad abstract recognition categories, such as a category that is activated by any face; high vigilance forces the learning of specific concrete categories, such as a category that is activated by a particular view of a familiar friend's face. iSTART proposes that individuals with autism have their vigilance fixed at such a high setting that their learned representations are very concrete, or hyperspecific.

"Hypervigilance leads to hyperspecific learning which perpetuates a multitude of problems with learning, cognition, and attention," said Grossberg.

The second model, called the Cognitive-Emotional-Motor, or CogEM, model, extends ART to the learning of cognitive-emotional associations, or associations that link objects and events in the world to feelings and emotions that give these objects and events value. Under normal circumstances, arousal of the circuits in the brain that control emotion are set at an intermediate level. Either under-arousal or over-arousal of these circuits can cause abnormal emotional reactions and problems with cognitive-emotional learning.

"If the emotional center is over-aroused, the threshold to activate a reaction is abnormally low, but the intensity of the emotion is abnormally small," said Grossberg. "In contrast, if the emotional circuits are under-aroused, the threshold for activating an emotion is abnormally high, but when this threshold is exceeded, the emotional response can be over reactive. The iSTART model proposes that individuals with autism experience under-aroused emotional depression which helps explain symptoms like reduced emotional expression as well as emotional outbursts."

The third model, called the Spectral Timing model, clarifies how the brain adaptively times responses in order to acquire rewards and other goals. iSTART shows how individuals with autism experience failures of adaptive timing that lead to the premature release of behaviors which are then unrewarded.

"iSTART depicts how autistic symptoms may arise from breakdowns in normal brain processes, notably a combination of under-stimulated emotional depression in the amygdala and related brain regions, learning of hyperspecific recognition categories in the temporal and prefrontal cortices, and breakdowns of adaptively timed attention and motor circuits in the hippocampal system and cerebellum," said Grossberg. "The model clarifies how malfunctions in these mechanisms can, though a system-wide vicious circle, cause and maintain problems with them all."

According to the researchers, iSTART is a breakthrough in the understanding of the many factors that contribute to autism and provides a unifying perspective that connects autistic symptoms to brain mechanisms that have no obvious connection to the condition.

"This approach should make it easier for scientists studying normal behavior to connect their work to autism research," said Grossberg. "iSTART opens up a wide range of possible new experiments to evaluate autistic behaviors and further test and develop the model."

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu
http://www.cns.bu.edu/Profiles/Grossberg

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>