New cue used to perceive motion in depth

Building on principles of binocular geometry established by Leonardo da Vinci, Drs. Kevin Brooks and Barbara Gillam of the University of New South Wales in Sydney, Australia, conducted a series of experiments in which observers were asked to match the amplitude of motion in depth seen through stereoscopic stimuli presented on two computer monitors. Dynamic versions of a monocular gap stereogram were used to produce a percept of motion in depth from changes in the locations of unmatched features, despite a lack of any previously known cues to 3D motion. The studies showed that while the established cues of changing disparity (CD) and interocular velocity difference (IOVD) are involved in the percept of motion in depth for features visible in both eyes, a new cue, dynamic half-occlusion, is used when unmatched features are observed.

“The benefits of this knowledge enhance the potential for creating more effective simulation of motion in 3D displays and virtual environments,” said Brooks. “It will also be interesting to see whether neurophysiological studies are able to locate the cells that mediate these processes.”

Media Contact

Elinore Tibbetts EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors