Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air travel and pandemic flu

02.05.2006


The next flu pandemic: when it happens, restricting air travel won’t help



Restricting air travel from countries where there is a serious influenza outbreak will do little to hold back the spread of the infection, according to the findings of a study conducted at the UK Health Protection Agency and published in the journal PLoS Medicine.

Sometimes a new type of influeza virus appears that causes an illness that is more serious than is usually the case for flu. This happened, for example, in 1918, when a flu pandemic killed between 20 million and 100 million people. Recently, there have been concerns about the new type of bird (avian) flu. At present the virus responsible does not pass easily from birds to humans, and it does not seem to pass from one human to another. However, the fear is that the virus might change and that human-to-human infection could then be possible. Should all this happen, the changed virus would be a major threat to human health.


With current technology, it would take several months to produce enough vaccine against such a new virus for even a small proportion of the world’s population. By that time, it would probably be too late; the virus would already have spread to most parts of the world.

Health authorities must therefore consider all the methods that might control the spread of the virus. With the increase in international travel that has taken place, the virus could spread more quickly than in previous pandemics. Restrictions on international travel might be considered necessary, particularly travel by air. However, it is important to estimate how useful restrictions on air travel might be in controlling the spread of a flu virus. Travel restrictions are usually unpopular and could themselves be harmful. If they are not effective, resources could be wasted on enforcing them.

Researchers of the Centre for Infections, Health Protection Agency, UK used the techniques of mathematical modelling. In other words, complex calculations were done using information that is already available about how flu viruses spread, particularly information recorded during a worldwide flu outbreak in 1968–1969. Using this information, virtual experiments were carried out by simulating worldwide outbreaks on a computer. The researchers looked at how the virus might spread from one city to another and how travel restrictions might reduce the rate of spread. Their calculations allowed for such factors as the time of the year, the number of air passengers who might travel between the cities, and the fact that some people are more resistant to infection than others.

From the use of their mathematical model, the researchers concluded that restrictions on air travel would achieve very little. This is probably because, compared with some other viruses, the flu virus is transmitted from one person to another very quickly and affects many people. Once a major outbreak was under way, banning flights from affected cities would be effective at significantly delaying worldwide spread only if almost all travel between cities could be stopped almost as soon as an outbreak was detected in each city. It would be more effective to take other measures that would control the spread of the virus locally. These measures could include use of vaccines and antiviral drugs if they were available and effective against the virus.

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>