Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists apply a mathematical method that refines the contour of tumors to image analysis to improve their treatment

05.04.2006


Cancer treatment needs refinement. Any method aimed at treating a tumor, from extirpation to radiotherapy, requires a precise knowledge of the cancerous tumor margins so that the intervention on it may be performed in such a way that the possibilities of healing are maximised and the effects on surrounding healthy tissues are minimised. A group of researchers from the Department of Mathematics at the Universitat Jaume I in Castelló have implemented a mathematical method that is applied to medical imaging analysis, which enables to determine the margins of a tumor in the prostate, lung or bladder.



In most cases, the task of delimitating the contour of a tumor is carried out manually by a specialist. According to his or her experience, the doctor draws the perimeter within which he or she locates the cancerous tissue on an image obtained by computerised axial tomography (CAT) or magnetic resonance (MR) images. This perimeter may vary slightly depending on the professional who traces it. The method developed by the mathematicians at the UJI does away with such a great subjective variability, and enables a single, more objective and standardised confidence interval to be obtained for each tumor type and patient depending on his or her characteristics.

“What we have done is to define an average and most adjusted confidence interval possible from a series of contours delineated by various professionals on one same tumor, in such a way that it only surrounds the tissue that is considered cancerous and leaves any surrounding tissue which is not to be submitted to treatment unharmed”, as Ximo Gual, the person in charge of the research, explains.


By combining concepts of geometry, statistics and probability, the scientists at the UJI in cooperation with the radiotherapist oncology service at the Hospital Universitari La Fe in Valencia have developed a standard method for prostate cancer cases in patients aged 40-60 years. “All that remains now is to incorporate these mathematical formulae into the software used by medical teams”, Gual points out. The idea is that the machine can automatically write the confidence interval on the contour of the tumor previously drawn by the specialist.

However, the subjectivity of the health professionals is not the only variable that affects the task of determining the margins of a tumor. Indeed, this internal organ motion itself hinders the identification and subsequent monitoring of cancerous tissue. This is particularly obvious in the case of lungs. The problem is that the CAT or MR images corresponding to the same patient but taken on different days do not fit owing to internal organ motion, even though the external cut-off at which the images are taken is the same on each occasion.

“Our aim is to make progress in our research in order to achieve a 3D contouring of the tumor. The idea is to rebuild the tumor in 3D from crosscut images, and to define the three-dimensional confidence interval that accounts for the variability due to internal organ motion”, Ximo Gual explains.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=6081899

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>