Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We’re learning night … and day

28.03.2006


We already knew that sleeping helped to reinforce what we’ve learned. But today, a study at the ULg demonstrates for the first time that the brain doesn’t wait until night to structure information. Day and night, the brain doesn’t stop (re)working what we learn.



Positron Emission Tomography (PET-scan) studies carried out recently at the ULg Cyclotron Research Centre have revealed the reactivation of cerebral activity associated with learning new information in humans while they sleep. (1,2) This supports the hypothesis of the role of sleep in memorizing.

Taking advantage of the new opportunities offered by 3 Tesla’s functional Magnetic Resonance Imaging (fMRI)(*), Philippe Peigneux and his colleagues at the University of Liege published findings this week in the international journal PLoS Biology (3). Their study revealed for the first time a phenomenon that occurs during active waking that is similar to reactivation of the cerebral activity linked to learning.


To arrive at this result, every half hour, they recorded (or scanned) the cerebral activity of volunteers while they performed a ten-minute auditive attention task, during two sessions spaced out over a few weeks. At each of these sessions, during the half hour between the first two scans of the attention task, the volunteer was given something new to learn. A third scan was then performed after a half-hour rest. During one of the two sessions, the learning consisted in the volunteer memorizing a route in a virtual city he or she was exploring on a computer. This spatial navigation task is known to be dependent on the hippocampus, a cerebral structure that plays a vital role in learning, and damage to which results in inability to memorize new facts (known as anterograde amnesia). The other session was devoted to acquisition by repetition (or procedural learning) of new visuomotor sequences. For this task, it is not necessary that the subject be aware of what he or she is learning, and its success depends mainly on the integrity of the striatum and the related motor regions.

Analysis of the results demonstrated that, compared with the first scan, the cerebral activity evoked by the auditive attention task during the second and third scans was systematically modified by the kind of learning experience that took place between the first and second scans, and this happened in the cerebral regions associated with this learning. Moreover, this post-learning cerebral activity evolves differently over time depending on the type of learning, and is related to the performance level achieved by the subjects when they are tested on the quality of their memory at the end of the session. These elements indicate active processing of the newly formed mnestic traces during the post-learning waking, which could occur at the same time as other cognitive tasks.

More generally, this study from the ULg Cyclotron Research Centre demonstrates for the first time that the human brain does not simply put newly acquired information in standby until there is a period of calm or sleep to strengthen them, but rather continues to process them dynamically as soon as the learning episode has ended, even if the brain has to face an uninterrupted series of completely different cognitive activities.

Philippe Peigneux, PhD | alfa
Further information:
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0040100
http://www.ulg.ac.be

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>