Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There’s more than meets the eye in judging the size of an object

10.03.2006


Neuroscientists from the University of Washington and the University of Minnesota have found that the first area in the cortex of the human brain that receives information from the eyes processes the perceived size, rather than the actual size, of an object.



"Our eyes only tell us part of what we need to be able to see. The other part is done by the brain, taking the input from the eyes and making guesses or inferences about what’s out there in the enviro You can’t always trust your eyes. nment. Usually these inferences are very accurate, but sometimes they lead us astray in the form of visual illusions," said Scott Murray, a UW assistant psychology professor and lead author of a study published in the current issue of Nature Neuroscience.

Murray and his Minnesota colleagues, Huseyin Boyaci and Daniel Kersten, used functional magnetic resonance imaging (fMRI) to see how the brain processes the size of objects when faced with an illusion such as the long-known moon illusion. For centuries it has been known that the moon, while rising, looks huge when it is near the horizon and smaller when high in the sky. It is in reality always the same size.


The researchers used a similar illusion, one that looked at the perceived difference in the size of an object at different distances. For their experiment they placed two identical spheres decorated with a checkerboard pattern in the front and rear of a receding brick hallway. In this kind of illusion, the more distant object appears to occupy a larger portion of the visual field.

Using fMRI, the researchers examined how the brains of five people with normal vision registered this difference in perceived size.

They found that the brain region known as the primary visual cortex, which is the first area in the cortex to receive input from the retina, showed a difference. Even though both spheres occupied exactly the same size on the retina, the rear sphere activated an approximately 20 percent larger area in the primary visual cortex than the front sphere. This difference closely matched a perceptual difference in size made by the subjects. Asked about the size of the two spheres, the people estimated the back sphere to be about 20 percent larger than the front one.

Murray said the simplicity of the results can belie its importance to anyone not involved in vision research.

"It almost seems like a first grader could have predicted the result. But virtually no vision or neuroscientist would have. The very dominant view is that the image of an object in the primary visual cortex is just a precise reflection of the image on the retina. I’m sure if one were to poll scientists, 99 percent of them would say the ’large’ moon and the ’small’ moon occupy the same amount of space in the primary visual cortex , assuming they haven’t read our paper!"

Murray said such illusions are more than simple curiosities because they can help identify how the visual system works.

"Our finding is important because it demonstrates that the process of making inferences about visual properties in our environment is occurring in the earliest stages of the visual system," he said. "Researchers have long believed that the visual system is organized hierarchically, with early visual areas such as the primary visual cortex simply registering the physical input from the eyes and ’higher’ visual areas attempting to put all the information together. This work challenges these theories of the organization of the visual system."

Joel Schwarz | EurekAlert!
Further information:
http://www.u.washington.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>