Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common osteoporosis treatment may help men with prostate cancer suffering from bone loss

27.02.2006


Men with prostate cancer who experience bone loss from cancer treatment could benefit from a weekly oral therapy commonly given to women with osteoporosis, according to a study presented by the University of Pittsburgh Medical Center (UPMC) at the American Society of Clinical Oncology Prostate Cancer Symposium, Feb. 24 to 26 at the San Francisco Marriott. The study, abstract number 139, will be featured in a press program at the meeting, 7:30 a.m., Sunday, Feb. 26.



"In previous studies, we have determined that men who receive androgen deprivation therapy, a frequently used treatment for prostate cancer, suffer from severe drops in bone mass and are at an increased risk for fracture," said study principal investigator Susan Greenspan, M.D., professor of medicine, University of Pittsburgh and director, Osteoporosis Prevention and Treatment Center, UPMC. "In an attempt to mitigate these effects, we gave men using this therapy a once-weekly oral agent called alendronate that is commonly used to treat osteoporosis. We found that men who received it had significantly increased bone mass compared to those who did not receive the therapy."

The study included 112 men with prostate cancer with an average age of 71. After an average of two years androgen deprivation therapy for prostate cancer, only 9 percent of the men had normal bone mass, while 52 percent had low bone mass and 39 percent developed osteoporosis. To study the effect of alendronate on these men, they were randomized into two groups to receive either alendronate once a week through an orally administered pill or a placebo. At one year follow-up, bone mass in the spine and hip increased significantly in the men treated with alendronate, 4.9 percent and 2.1 percent respectively. By comparison, men in the placebo group had significant losses of bone mass in the spine and hip, 1.3 percent and .7 percent respectively. In addition, the therapy was well-tolerated and easily administered.


"Since most men with prostate cancer remain on androgen deprivation therapy for an indefinite amount of time, bone loss can be a serious and long-term side effect from therapy," said Joel Nelson, M.D., co-author of the study and professor and chairman of the department of urology at the University of Pittsburgh School of Medicine. "With more than 230,000 men being diagnosed with prostate cancer each year, the addition of alendronate therapy could help to prevent the incidence of debilitating bone fractures."

Androgen deprivation therapy works by depriving the body of testosterone, an androgen hormone that increases the growth of prostate tumors. However, testosterone also is essential to maintaining bone mass in men. While doctors have been using this type of therapy for more than a decade to treat men with late-stage metastatic prostate cancer, they have begun using it more recently in men with earlier-stage disease and for longer periods of time; this increased exposure increases the risk for developing osteoporosis.

"These results suggest to us that men who are under treatment for prostate cancer should be encouraged to get a bone density test and that those at risk could benefit greatly from bone-preserving therapy," said Dr. Greenspan.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>