Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show brain uses optimal code for sound

24.02.2006


Landmark results explain how we process sound, could improve devices from iPods to cochlear implants



Scientists at Carnegie Mellon University have discovered that our ears use the most efficient way to process the sounds we hear, from babbling brooks to wailing babies. These results represent a significant advance in our understanding of how sound is encoded for transmission to the brain, according to the authors, whose work is published with an accompanying "News and Views" editorial in the Feb. 23 issue of Nature.

The research provides a new mathematical framework for understanding sound processing and suggests that our hearing is highly optimized in terms of signal coding--the process by which sounds are translated into information by our brains--for the range of sounds we experience. The same work also has far-reaching, long-term technological implications, such as providing a predictive model to vastly improve signal processing for better quality compressed digital audio files and designing brain-like codes for cochlear implants, which restore hearing to the deaf.


To achieve their results, the researchers took a radically different approach to analyzing how the brain processes sound signals. Abstracting from the neural code at the auditory nerve, they represented sound as a discrete set of time points, or a "spike code," in which acoustic components are represented only in terms of their temporal relationship with each other. That’s because the intensity and basic frequency of a given feature are essentially "kernalized," or compressed mathematically, into a single spike. This is similar to a player piano roll that can reproduce any song by recording what note to press when the spike code encodes any natural sound in terms of the precise timings of the elemental acoustic features. Remarkably, when the researchers derived the optimal set of features for natural sounds, they corresponded exactly to the patterns observed by neurophysiologists in the auditory nerves.

"We’ve found that timing of just a sparse number of spikes actually encodes the whole range of nature sounds, including components of speech such as vowels and consonants, and natural environment sounds like footsteps in a forest or a flowing stream," said Michael Lewicki, associate professor of computer science at Carnegie Mellon and a member of the Center for the Neural Basis of Cognition (CNBC). "We found that the optimal code for natural sounds is the same as that for speech. Oddly enough, cats share our own optimal auditory code for the English language."

"Our work is the only research to date that efficiently processes auditory code as kernalized spikes," said Evan Smith, a graduate student in psychology at the CNBC.

Until now, scientists and engineers have relied on Fourier transformations--initially discovered 200 years ago--to separate and re-constitute parameters like frequency and intensity as part of traditional sound signal processing.

"Our new signal processing framework appears far more efficient, effective and concise in conveying a rich variety of natural sounds than anything else," Lewicki said.

The approach by Smith and Lewicki dissects sound based only on the timing of compressed "spikes" associated with vowels (like cat vocalizations), consonants (like rocks hitting one another) and sibilants (ambient noise).

To gather sounds for their research, the scientists traipsed through the woods and recorded cracking branches, crunching leaves and wind rustling through leaves before returning to the laboratory to de-code the information contained in this rich set of sounds. They also discovered what they consider the most "natural" sound: if they play back a random set of spikes, it sounds like running water.

"We’re very excited about this work because we can give a simple theoretical account of the auditory code which predicts how we could optimize signal processing to one day allow for much more efficient data storage on everything from DVDs to iPods," Lewicki said.

"For instance, if we could use a cochlear implant to ’talk’ to the auditory nerve in a more natural way via our discovered coding, then we could quite possibly design implants that would convey sounds to the brain that are much more intelligible," he said.

Jonathan Potts | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>