High resolution ’snapshots’ detail dynamics of a cocaine antibody

Information may spur new therapeutic approaches to addiction and abuse

Cocaine-binding antibodies have shown some promise in their ability to neutralize cocaine toxicity, but their binding ability is severely impaired by high concentrations of the drug. A catalytic monoclonal antibody such as 7A1, on the other hand, has the ability to regenerate after each new dose of the drug, making it far more effective than others in metabolizing cocaine.

The study, which will be published in the February issue (Volume 14 Issue 2) of the journal Structure, was led by Ian A. Wilson, D.Phil., of Scripps Research Department of Molecular Biology and The Skaggs Institute for Chemical Biology, and Kim D. Janda, Ph.D., of Scripps Research Departments of Chemistry and Immunology and The Skaggs Institute for Chemical Biology.

Despite intensive research, cocaine abuse continues to be a major public health problem, so far eluding efforts at developing an effective therapeutic agent to counter the craving, addiction, and overdose of the drug. To date, no treatment has been approved by the Food and Drug Administration (FDA).

Commenting on the new findings, Xueyong Zhu, Ph.D., the primary author of the study and a staff scientist in the Wilson laboratory said, “Development of effective therapies for cocaine abuse has been a long-standing goal, and a number of medications under study do show some promise. Immunopharmacotherapy has been proposed as a way to neutralize the drug outside the central nervous system- basically soaking up the drug before it has a chance to cross the blood brain barrier-as a potentially effective new approach to treat cocaine abuse.”

Using a monoclonal antibody endowed not only with high binding ability, but also with sufficient catalytic activity to metabolize cocaine, would have potentially enhanced therapeutic effects, Zhu said. This antibody could intercept cocaine in the blood stream before it reaches the central nervous system-stopping the drug cold. Because cocaine has a half life of approximately 30 minutes inside the human body, a cocaine catalytic antibody would basically have to out-run the body’s natural metabolism process to have any serious impact on the psychoactive effects of the drug.

Generated by x-ray crystallography, pictures of the conformational changes that occur during the antibody’s complete catalytic cycle show the molecular basis for catalysis and reveal possible mutations that could increase catalytic proficiency. This, Zhu pointed out, provides a foundation for the humanization and mutagenesis of the antibody to enhance its cocaine-hydrolyzing activity and make future human clinical trials feasible. “Given the fact that catalytic antibodies have been produced with the same levels of efficiency as natural enzymes, it seems well within the realm of possibility,” he added.

To reach this ambitious goal, however, it may be necessary to explore new incremental approaches for optimizing the efficiency of such catalytic activity. Novel functional groups could be introduced into first generation antibody catalysts by multiple rounds of mutagenesis and selection to produce improvements. In essence, this would allow scientists to dramatically accelerate the evolutionary process, producing improvements in the immune system in weeks or months that previously took billions of years.

“The structural insights into antibody catalysis that we have shown with 7A1 Fab’ are critical for any future improvement of effective biocatalysts,” Zhu said. “One of the main goals of our lab has been to focus on catalytic antibodies that will have a direct impact on public health issues. With the snapshots of the complete cycle of the cocaine antibody catalytic reaction, we have shed new light on the sequence of events in an antibody-mediated reaction and provided a rare glimpse of the structural dynamics involved. With this information, it’s possible to move onto the next step in the development of a treatment for cocaine abuse and addiction.”

Media Contact

Keith McKeown EurekAlert!

More Information:

http://www.scripps.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors