Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing toxic side effects of inflammatory disease therapy

10.02.2006


Researchers at the University of California, San Diego (UCSD) School of Medicine have developed a mouse model that could help scientists develop better drugs to fight autoimmune and inflammatory disorders such as multiple sclerosis and rheumatoid arthritis.



Inflammation is a process by which the white blood cells and chemicals of the immune system rally to protect the body from infection and foreign substances such as bacteria and viruses. In autoimmune diseases, however, this defense system triggers an inflammatory response when there are no foreign substances to fight off, or the defense system goes into "overdrive" and forgets how to turn off. In these diseases, the body’s normally protective immune system attacks and damages its own healthy tissues.

UCSD researcher Mark H. Ginsberg, M.D., professor of Medicine at the University of California, San Diego (UCSD) School of Medicine, and his colleagues have identified a mechanism to selectively disrupt signaling to recruit lymphocytes and monocytes – white blood cells sent to sites of inflammation to fight infection – while maintaining the body’s other essential immune system functions. Their findings appear online on February 9 in advance of print publication in the March issue of the Journal of Clinical Investigation.


In the case of certain autoimmune diseases, the alpha 4 integrins cause white blood cells to accumulate at the site of the disease, resulting in inflammation. An integrin is a surface molecule found on the exterior of cells that helps cells adhere and migrate. It is also believed to be responsible for a role in cell signaling, which allows cells to communicate with the extracellular environment. One of the promising treatments for disorders such as multiple sclerosis, inflammatory bowel disease and rheumatoid arthritis – the alpha 4 integrin antagonist – works by blocking cell adhesion. However, this anti-inflammatory therapy could cause adverse side effects, such as impairment of the immune system and the patient’s ability to develop new red and white blood cells in the bone marrow, a process called hematopoiesis.

"Our goal was to identify a more specific target of alpha 4 integrin molecules in order to interfere with their roles in disease progression while sparing alpha4 functions required for normal health," said David M. Rose, D.V.M., Ph.D., assistant professor of medicine at UCSD, and co-author of the study.

The research team created mutant mice known as "alpha4(Y991A) mice," in which the alpha4 integrin can no longer bind to a signaling protein inside the cell called paxillin. Previously generated alpha4 integrin deficient mutant mice died at birth because too many aspects of alpha4 function were changed. The new alpha4(Y991A) mice have an impairment only in the interaction between alpha4 and paxillin, and thus have fewer effects on development. The researchers discovered that, in contrast to normal mice, alpha4(Y991A) mice exposed to an inflammatory stimulus recruited fewer circulating white blood cells (B and T cells) to the region of exposure. However, the development of new B and T cells was unaffected.

The authors suggest that these mice are a valuable tool to test models of inflammatory and autoimmune diseases of humans, and that a new class of pharmaceutical agents that target the specific interaction of paxillin and alpha4 integrin could be important future treatments of inflammatory disease.

"We were surprised to find that the mutation actually had very little effect on the animal’s development of lymphocytes, the white blood cells that fight infection," said Rose. "This could prove to be an important first step in development of a more effective drug to target alpha4 integrins in autoimmune and inflammatory disease of humans."

Additional co-authors include Kenneth Kaushansky, M.D., Chloé C. Féral, Jaewon Han, Norman Fox and Gregg J. Silverman, UCSD Department of Medicine.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

nachricht How herpesviruses shape the immune system
09.01.2019 | German Center for Infection Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>