Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mount Sinai School of Medicine launches a phase II clinical trial for new gene transfer drug study

03.02.2006


As many as 8-10 million Americans have Peripheral Artery Disease (PAD), by age 70, roughly 20 percent of the population has it, and people with PAD face a six-to-seven times higher risk of heart attack or stroke.



PAD, commonly seen in patients with a history of smoking, diabetes, and/or coronary artery disease, is the build up of fatty deposits in the inner linings of the artery walls of the heart and brain. These blockages restrict blood circulation, mainly in arteries leading to the kidneys, stomach, arms, legs and feet. In its early stages a common symptom is uncomfortable cramping or fatigue in the legs brought on by walking and relieved with rest--a condition called intermittent claudication.

The WALK study, led by the Mount Sinai School of Medicine and sponsored by Genzyme Corporation, will determine if a new gene transfer treatment, Ad2/HIF-1a/VP16, helps ease the pain caused by intermittent claudication.


"The leg pain experienced by people with PAD is very different than leg pain caused by joint problems or arthritis," said Dr. Jeffrey W. Olin, the Principal Investigator for the WALK study and Professor of Medicine at the Mount Sinai School of Medicine and Director of Vascular Medicine and the Vascular Diagnostic Laboratory in the Zena and Michael A. Wiener Cardiovascular Institute of The Mount Sinai Medical Center. "This gene transfer treatment could offer new hope for the millions of people that suffer from the leg pain associated with peripheral arterial disease."

HIF-1a (Hypoxia-inducible factor-one alpha gene) is produced naturally in the body when there is not enough oxygen reaching the leg tissue. The study drug, Ad2/HIF-1a/VP16, is very similar to the HIF-1a the body naturally produces but has been genetically changed to include important biological characteristics that may grow new blood vessels and improve blood flow in legs.

Mount Sinai and 40 other sites involved in the trial are seeking to enroll approximately 300 men and women in the United States and Europe. The study is open to male or female patients between the ages of 40-80 who suffer from PAD that has progressed to activity-limiting discomfort in at least one leg. The study will assess the safety and effectiveness of three different doses of Ad2/HIF-1a/VP16 compared to placebo in treatment of intermittent claudication.

A Phase I study was conducted using Ad2/HIF-1a/VP16 in patients with Critical Limb Ischemia and preliminary safety and potential bioactivity were demonstrated. Regulatory authorities in both the United States and Europe have reviewed this protocol and authorized Genzyme to proceed with enrollment.

If you are interested in participating, please call (212) 241-8902 or visit www.walkstudy.com.

Cardiovascular Research At Mount Sinai

The Zena and Michael A. Wiener Cardiovascular Institute and the Marie-Josée and Henry R. Kravis Center for Cardiovascular Health at The Mount Sinai Medical Center are preeminent resources for the study and treatment of heart and blood vessel diseases. Committed to finding new and improved methods of diagnosis, treatment and prevention, they comprise a multidisciplinary effort that brings together the extraordinary expertise of Mount Sinai School of Medicine and The Mount Sinai Hospital in cardiovascular medicine, cardiovascular surgery, medical education, research and community service, with state-of-the-art facilities for patient care, advanced laboratories for scientific research and leading programs for postgraduate education of clinician-scientists.

Mount Sinai School of Medicine

Located in Manhattan, Mount Sinai School of Medicine is internationally recognized for ground-breaking clinical and basic-science research, and innovative approaches to medical education. Through the Mount Sinai Graduate School of Biological Sciences, Mount Sinai trains biomedical researchers with an emphasis on the rapid translation of discoveries of basic research into new techniques for fighting disease. One indication of Mount Sinai’s leadership in scientific investigation is its receipt during fiscal year 2004 of $153.2 million. Mount Sinai now ranks 25th among the nation’s medical schools in receipt of research support from NIH. Mount Sinai School of Medicine also is known for unique educational programs such as the Humanities in Medicine program, which creates opportunities for liberal arts students to pursue medical school, and instructional innovations like The Morchand Center, the nation’s largest program teaching students and physicians with "standardized patients" to become not only highly skilled, but compassionate caregivers. Long dedicated to improving its community, the School extends its boundaries to work with East Harlem and surrounding communities to provide access to health care and educational programs to at risk populations.

| EurekAlert!
Further information:
http://www.mssm.edu
http://www.walkstudy.com

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>