Research breakthrough pinpoints aim of ion beams fired at cancer tumors

Nonsurgical cancer therapy that destroys tumors but leaves healthy surrounding tissue intact could be available at every hospital if research reported this week in the journal Nature eventually comes to fruition.


The Los Alamos National Laboratory Trident laser team, in collaboration with researchers from the University of Nevada, Reno and elsewhere, has succeeded in concentrating the intensity of a laser-driven carbon ion beam into a narrow range.

This work builds upon past research led by the University of Nevada that discovered much higher quality laser proton beams from laser acceleration as opposed to conventional particle acceleration.

Producing carbon ion beams and limiting their spread removes the major impediment to improving such applications as tumor irradiation therapy.

Many technological challenges still have to be met to develop a compact particle generator that could be used in a hospital setting. No clinical trials are imminent.

This research also opens up opportunities for advances in nuclear fusion applications.

The article, “Laser acceleration of monenergetic MeV ion beams,” will be published Jan. 26. This research was supported by the Los Alamos National Laboratory Directed Research and Development program. The University of Nevada was also supported by the Department of Energy’s National Nuclear Security Administration through the University of Nevada.

Media Contact

Melanie Robbins EurekAlert!

More Information:

http://www.unr.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors