Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRIs better at diagnosing needs for ’bionic ear’ implants

12.01.2006


Magnetic resonance imaging is a better diagnostic tool for cochlear ear implants than the more commonly used high-resolution computed tomography, a UT Southwestern study shows.



A cochlear implant, sometimes called a "bionic ear," allows patients with congenital hearing loss to bypass the problem and again perceive sound. Surgeons conduct radiologic studies using either an MRI or CT scan prior to implantation to determine abnormalities in the inner ear, conditions of related nerves and any obstructions in the ear ducts.

In the first head-to-head comparison, a research team led by Dr. Peter Roland, professor and chairman of otolaryngology, found that MRIs offered a more detailed view and better information on specifics. The results are reported online in the journal Otology & Neurotology.


"Thirty percent of patients we evaluated had abnormalities on MRI we would not have seen on CT, whereas in none of the patients were there findings on CT that we wouldn’t have seen on MRI," said Dr. Roland, the study’s senior author.

Some of those specifics help determine which surgical technique is used, the specific electrode arrays employed and can impact in which ear the cochlear implant is placed.

"In half the patients who had abnormalities on MRI that weren’t seen on CT, it made a difference in which ear was selected for implantation," he said.

In the study, researchers evaluated the records of 56 implantation candidates, imaging 112 temporal bones. CT scans found as few as 6 percent of certain abnormalities.

On average, testing and anesthesiology costs for MRIs are 40 percent to 50 percent higher than those associated with CTs.

The implant is essentially a bionic ear, Dr. Roland said. The ear normally translates sound waves - a mechanical form of energy - to electrical impulses, which the brain perceives as sound. Implants bypass the dysfunctional inner ear and mirror the natural mechanical-to-electrical-impulse translation, a different process than hearing aids, which simply amplify the sound waves.

Cochlear implantation is targeted to those with nerve deafness, which patients can be born with or can acquire as part of the aging process, from injury, from excessive noise or from toxic reactions.

The implants work best for individuals who have lost hearing after they have acquired speech, and are more effective in those with recent hearing loss. They also work very well with those born deaf, provided they are implanted early, such as before age 7 or 8.

"The earlier you implant the device, the better the results," Dr. Roland said.

In about 1 percent or 2 percent of cases, the implants can become infected. In related research, Dr. Roland analyzed how the implants become infected and concluded that cochlear implant material allows a biofilm to form that bacteria live in. The biofilm makes it difficult for antibiotics to reach the bacteria, altering the metabolism and limiting the effectiveness of antibiotics.

"Eradicating the infection with antibiotics is very difficult and sometimes impossible," Dr. Roland said. "In those cases, the implant has to be removed. The patient can’t hear again until the implant is put back again, which is often six to eight weeks. So it’s a very unpleasant experience, especially for children."

The study was the first to remove an uninfected implant - the failure was electronic - and find no biofilm. That indicated to researchers that the biofilms cause infection, he said.

Researchers found nooks and crannies in the design of the implants that contribute to biofilm development, giving designers some new information to help eliminate the problem.

"We’re also working on techniques to alter the surface structures of cochlear implants at the nano level to keep these biofilms from forming," Dr. Roland said.

Other UT Southwestern researchers involved in the study included Drs. Timothy Booth, associate professor of radiology, and David Parry, a former resident.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>