Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRIs better at diagnosing needs for ’bionic ear’ implants

12.01.2006


Magnetic resonance imaging is a better diagnostic tool for cochlear ear implants than the more commonly used high-resolution computed tomography, a UT Southwestern study shows.



A cochlear implant, sometimes called a "bionic ear," allows patients with congenital hearing loss to bypass the problem and again perceive sound. Surgeons conduct radiologic studies using either an MRI or CT scan prior to implantation to determine abnormalities in the inner ear, conditions of related nerves and any obstructions in the ear ducts.

In the first head-to-head comparison, a research team led by Dr. Peter Roland, professor and chairman of otolaryngology, found that MRIs offered a more detailed view and better information on specifics. The results are reported online in the journal Otology & Neurotology.


"Thirty percent of patients we evaluated had abnormalities on MRI we would not have seen on CT, whereas in none of the patients were there findings on CT that we wouldn’t have seen on MRI," said Dr. Roland, the study’s senior author.

Some of those specifics help determine which surgical technique is used, the specific electrode arrays employed and can impact in which ear the cochlear implant is placed.

"In half the patients who had abnormalities on MRI that weren’t seen on CT, it made a difference in which ear was selected for implantation," he said.

In the study, researchers evaluated the records of 56 implantation candidates, imaging 112 temporal bones. CT scans found as few as 6 percent of certain abnormalities.

On average, testing and anesthesiology costs for MRIs are 40 percent to 50 percent higher than those associated with CTs.

The implant is essentially a bionic ear, Dr. Roland said. The ear normally translates sound waves - a mechanical form of energy - to electrical impulses, which the brain perceives as sound. Implants bypass the dysfunctional inner ear and mirror the natural mechanical-to-electrical-impulse translation, a different process than hearing aids, which simply amplify the sound waves.

Cochlear implantation is targeted to those with nerve deafness, which patients can be born with or can acquire as part of the aging process, from injury, from excessive noise or from toxic reactions.

The implants work best for individuals who have lost hearing after they have acquired speech, and are more effective in those with recent hearing loss. They also work very well with those born deaf, provided they are implanted early, such as before age 7 or 8.

"The earlier you implant the device, the better the results," Dr. Roland said.

In about 1 percent or 2 percent of cases, the implants can become infected. In related research, Dr. Roland analyzed how the implants become infected and concluded that cochlear implant material allows a biofilm to form that bacteria live in. The biofilm makes it difficult for antibiotics to reach the bacteria, altering the metabolism and limiting the effectiveness of antibiotics.

"Eradicating the infection with antibiotics is very difficult and sometimes impossible," Dr. Roland said. "In those cases, the implant has to be removed. The patient can’t hear again until the implant is put back again, which is often six to eight weeks. So it’s a very unpleasant experience, especially for children."

The study was the first to remove an uninfected implant - the failure was electronic - and find no biofilm. That indicated to researchers that the biofilms cause infection, he said.

Researchers found nooks and crannies in the design of the implants that contribute to biofilm development, giving designers some new information to help eliminate the problem.

"We’re also working on techniques to alter the surface structures of cochlear implants at the nano level to keep these biofilms from forming," Dr. Roland said.

Other UT Southwestern researchers involved in the study included Drs. Timothy Booth, associate professor of radiology, and David Parry, a former resident.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>