Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unisex contraceptive tailed

11.10.2001


Channel stopping makes sperm swim slowly and aimlessly.
© SPL


Sperm go slow without a crucial protein.

The discovery of a protein that is crucial to sperm swimming in mice could lead to new male or female contraceptives or fertility treatments.

The protein forms a channel through the membrane of the sperm tail. It controls the inflow of calcium ions that trigger swimming.



All humans have the gene that encodes the channel, but it is switched on only in sperm cells. This would lessen the risk of side-effects from any channel-blocking contraceptive, for example.

"We think it’s going to be very useful for the development of male contraceptives," says Dejian Ren of Harvard Medical School in Boston1.

Ren’s team created mutant mice lacking the ion channel; all were sterile. These animals’ sluggish sperm move at about one-third of normal speed. The sperm also lack their normal counterparts’ sense of direction.

Sperm without the channel are incapable of making a violent whiplash movement, called hypermotility. Sperm turn hypermotile inside a female - possibly in response to a chemical signal from her - just before fertilization.

This turn of speed seems to enable a sperm to burst into the egg. Mutant sperm are too feeble to do this; they can fertilize an egg only if its outer layer is removed.

"Calcium has long been known to be very important in sperm function, but the details have been very elusive," says cell biologist David Garbers of the University of Texas Southwestern Medical Centre in Dallas. Much remains to be worked out about how the channel works, but the story so far is "all pretty cool", he says.

Defective calcium channels might be a cause of human male sterility. The same could be true for other ion channels in sperm, says Susan Benoff of North Shore University Hospital in Manhasset, New York.

Benhoff is developing contraceptives that target calcium channels in the heads of sperm. "Most male contraceptives in the pipeline are based on hormonal methods," she says. The effects of these may be hard to reverse: "Sperm count may not get back up to the usual level," says Benhoff. Ion-channel blockers could avoid these pitfalls.

Worldwide, the market for oral contraceptives was worth almost US$4 billion last year. The demand for a male pill would be "phenomenal", says Benoff. "Surveys show that men would be as willing as women to use oral contraception if it was convenient. I get phone calls every week from people wanting to take part in trials."

Potential male contraceptives have been overhyped in the past, warns Paul Wassarman, who studies fertilization at Mount Sinai School of Medicine in New York City. "Everyone who’s able to prevent fertilization thinks they have a target for contraception. Whether it’s realistic or not remains to be seen."

References
  1. Ren, D. et al. A sperm ion channel required for sperm motility and male fertility. Nature, 413, 603 - 609, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011011/011011-10.html

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>