Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique points to safer, more efficient vaccination

30.12.2005


Researchers have demonstrated a technique that has the potential to reduce the toxicity of vaccines and to make smaller doses more effective, according to a study published in PLoS Pathogens.



Developing vaccines is fraught with challenges, particularly because many candidates carry a high risk of toxic side effects. For example, twenty percent of people immunized against smallpox will suffer side effects.

Wilfred Jefferies, a researcher at the University of British Columbia and senior author of the study, and his colleagues have shown that boosting the production of TAP, an immune system component, can make smaller doses of vaccines more effective. Smaller vaccine doses would mean reduced side effects and the capacity to immunize more people with less material. “As the approach we have discovered appears to augment immune responses for different pathogens and is not limited to the genetics of the host we vaccinate, this new approach could have far reaching benefits in the field of vaccines,” Jefferies said.


Vaccines capitalize on normal immune responses. Viral infections are naturally detected with the aid of special molecules called the major histocompatibility complex (MHC), which alert immune system cells to destroy infected cells. If the same virus infects again, the system is primed and ready to respond more quickly. Vaccines, which are created from disease-causing viruses (or their relatives), provide a harmless first exposure so that future infections are thwarted before they become lethal.

In this study, Jefferies and his colleagues vaccinated mice against the viral relatives of rabies and measles viruses and simultaneously induced the overproduction of one component already part of the immune system, called TAP, which enhances MHC activity. Subsequently, specific “destroyer” cells increased fourfold, compared with traditional vaccination. Since these cells help initiate immunity, the group recognized that they were an important piece of the puzzle, according to Jefferies. “The pathway works like a machine or factory where increasing the efficiency of one component part can lead to a massive increase in functional output,” he said.

Next, using varying doses, the team vaccinated mice against a relative of the smallpox virus. Mice immunized with just one-hundredth the standard dose and induced to overproduce TAP were still able to survive an otherwise lethal viral infection.

“We were surprised that over-expression of TAP would have such a great effect because it implies that it is in limiting amounts normally or is inefficient normally,” Jefferies said. “Combining viral antigens with a gene that is involved in their processing appears to be a solution to increasing the efficacy of vaccines in general.”

Paul Ocampo | alfa
Further information:
http://www.plospathogens.org
http://www.plos.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>