Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how air pollution can cause heart disease

21.12.2005


New York University School of Medicine researchers provide some of the most compelling evidence yet that long-term exposure to air pollution--even at levels within federal standards--causes heart disease. Previous studies have linked air pollution to cardiovascular disease but until now it was poorly understood how pollution damaged the body’s blood vessels.



In a well-designed mouse study, where animals breathed air as polluted as the air in New York City, the researchers pinpointed specific mechanisms and showed that air pollution can be particularly damaging when coupled with a high-fat diet, according to new research published in the December 21 issue of JAMA.

"We established a causal link between air pollution and atherosclerosis," says Lung Chi Chen, Ph.D., Associate Professor of Environmental Medicine at NYU School of Medicine and a lead author of the study. Atherosclerosis--the hardening, narrowing, and clogging of the arteries--is an important component of cardiovascular disease.


The study, done in collaboration with the Mount Sinai School of Medicine and University of Michigan, looked at the effects of airborne particles measuring less than 2.5 microns, referred to as PM2.5, the size linked most strongly with cardiovascular disease. The emissions arise primarily from power plants and vehicle exhaust. The US Environmental Protection Agency (EPA) has regulated PM2.5 since 1997, limiting each person’s average exposure per year to no more than 15 micrograms per cubic meter. These tiny particles of dust, soot, and smoke lead to an estimated 60,000 premature deaths every year in the United States.

Dr. Chen and his colleagues divided 28 mice, which were genetically prone to developing cardiovascular disease, into two groups eating either normal or high-fat diets. For the next six months, half of the mice in each feeding group breathed doses of either particle-free filtered air or concentrated air containing PM2.5 at levels that averaged out to 15.2 micrograms per cubic meter. This amount is within the range of annual EPA limits and equivalent to air quality in urban areas such as New York City.

The researchers then conducted an array of tests to measure whether the PM2.5 exposure had any impact on the mice’s cardiovascular health. Overall, mice who breathed polluted air fared worse than those inhaling filtered air. But when coupled with a high-fat diet, the impact of PM2.5 exposure was even more dramatic. The results added up to a clear cause and effect relationship between PM2.5 exposure and atherosclerosis, according to the study.

On the whole, mice breathing polluted air had far more plaque than those breathing filtered air. In cross sections taken from the largest artery in the body--the aorta--mice on normal diets and exposed to PM2.5 had arteries 19.2 percent filled with plaque, the fatty deposits that clog arteries. The arteries of those breathing particle-free air were 13.2 percent obstructed. Among high-fat diet mice, those exposed to PM2.5 had arteries that were 41.5 percent obstructed by plaque, whereas the arteries of the pollution-free mice were 26.2 percent clogged. In both normal and high-fat diet mice, PM2.5 exposure increased cholesterol levels, which are thought to exacerbate plaque buildup.

Though findings for increased plaque among mice eating normal diets were not statistically significant, Dr. Chen believes that future research on larger numbers of animals will solidify the trend. "Even with the low-fat diet, there’s still something there. So that is something to think about," he says. He suspects that PM2.5 exposure could also greatly affect even people who do not eat high-fat diets.

Mice exposed to PM2.5 also appeared prone to developing high blood pressure, another element of cardiovascular disease, because their arteries had become less elastic. To measure tension in the arteries, the researchers tested how the neurotransmitters serotonin and acetylcholine affected the aortic arches of PM2.5-exposed mice differently than those of controls. The arteries taken from exposed mice were less elastic than the control group, constricting more in the presence of serotonin and relaxing less in response to acetylcholine. Once again, the mice fed high-fat diets suffered the most pronounced effects from breathing polluted air.

Finally, the researchers also examined various measures of vascular inflammation, which is involved in atherosclerosis on a number of levels. In the aortas of PM2.5–exposed mice, for example, they found increased levels of macrophages, immune cells that are an important ingredient in plaque deposits and also active participants in a biochemical pathway related to inflammation. The study revealed several signs that this pathway was more active, strengthening the connection between airborne particles and cardiovascular disease.

Jennifer Choi | EurekAlert!
Further information:
http://www.nyumc.org

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>