Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Chinese remedy shows potential in preventing breast cancer

21.12.2005


A derivative of the sweet wormwood plant used since ancient times to fight malaria and shown to precisely target and kill cancer cells may someday aid in stopping breast cancer before it gets a toehold. In a new study, two University of Washington bioengineers found that the substance, artemisinin, appeared to prevent the onset of breast cancer in rats that had been given a cancer-causing agent. The study appears in the latest issue of the journal Cancer Letters.

"Based on earlier studies, artemisinin is selectively toxic to cancer cells and is effective orally," according to Henry Lai, research professor in the Department of Bioengineering, who conducted the study with fellow UW bioengineer Narendra P. Singh, a research associate professor in the department. "With the results of this study, it’s an attractive candidate for cancer prevention."

The properties that make artemisinin an effective antimalarial agent also appear responsible for its anti-cancer clout. When artemisinin comes into contact with iron, a chemical reaction ensues that spawns free radicals – highly reactive chemicals that, when formed inside a cell, attack the cell membrane and other structures, killing the cell. The malaria parasite can’t eliminate iron in the blood cells it eats, and stores it. Artemisinin makes that stored iron toxic to the parasite.



The same appears to be true for cancer. Because they multiply so rapidly, most cancer cells have a high rate of iron uptake. Their surfaces have large numbers of receptors, which transport iron into the cells. That appears to allow the artemisinin to selectively target and kill the cancer cells, based on their higher iron content. In the latest study, the researchers administered to rats a single oral dose of 7,12-dimethylbenz[a]anthracene, a substance known to induce multiple breast tumors. Half of the rats then were fed regular food, while the other half were fed food with 0.02 percent artemisinin added. For 40 weeks, researchers monitored each group for the formation of breast tumors.

Among the rats that didn’t get artemisinin, 96 percent developed tumors. In comparison, 57 percent of the artemisinin-fed rats developed tumors.

In addition, the researchers report, tumors that did develop in the artemisinin-fed rats were both "significantly fewer and smaller in size when compared with controls."

The reason for artemisinin’s apparent preventative effect may be twofold, the researchers said. The substance may kill precancerous cells, which also tend to use more iron than ordinary cells, before those cells develop into a tumor.

Artemisinin also may impede angiogenesis, or a tumor’s ability to grow networks of blood vessels that allow it to enlarge. Because artemisinin is widely used in Asia and Africa as an anti-malarial, it has a track record of being relatively safe and causing no known side effects, Lai said. "The present data indicate that it may be a potent cancer-chemoprevention agent.

"Additional studies are needed to investigate whether the breast cancer prevention property of artemisinin can be generalized to other types of cancer."

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu
http://www.intl.elsevierhealth.com/journals/cale/

More articles from Health and Medicine:

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

nachricht How herpesviruses shape the immune system
09.01.2019 | German Center for Infection Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>