Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fantastic voyage into the heart delivers a protector against heart failure

16.12.2005


Reminiscent of the 1966 sci-fi thriller Fantastic Voyage, where a surgical team is miniaturized and injected into a dying man, researchers from Harvard Medical School have used injectable self-assembling peptide nanofibers loaded with the pro-survival factor PDGF-BB to protect rat cardiomyocytes from injury and subsequent heart failure. Their study appears online on December 15 in advance of print publication in the January 2006 issue of the Journal of Clinical Investigation.



Narrowed or blocked blood vessels are unable to deliver sufficient levels of oxygen to cardiomyocytes, which results in cardiomyocyte death, loss of the middle layer of the heart wall (the myocardium), and ultimately, heart failure. Therefore, therapies that protect cardiomyocytes from death may help prevent heart failure. In normal heart tissue, cardiomyocytes are surrounded by an intricate network of capillaries, and interaction of cardiomyocytes with endothelial cells that line the vessel wall and secrete PDGF-BB is integral to cardiomyocyte development and function. In the current study, Richard Lee and colleagues show that PDGF-BB has a direct pro-survival effect on cardiomyocytes. The authors went on to design a strategy in which short, self-assembling peptide nanofibers bind this pro-survival growth factor and, following injection into rat myocardium, facilitated prolonged and controlled delivery of PDGF-BB to the infarcted heart for up to 14 days. This strategy protected cardiomyocytes from injury, reduced infarct size, and preserved cardiac function. This effect could not be achieved by injecting nanofibers or PDGF-BB alone.

These nanofibers represent unique biomaterials able to deliver therapeutic agents directly to the injured tissue and as such hold great potential in the field of tissue regeneration, particularly following cardiac injury.


TITLE: Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers

AUTHOR CONTACT:
Richard T. Lee
Harvard Medical School, Boston, Massachusetts, USA
Phone: 617-768-8282, Fax: 617-768-8270, E-mail: rlee@rics.bwh.harvard.edu

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org
http://www.the-jci.org/article.php?id=25878

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>