Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trust-building hormone short-circuits fear in humans

09.12.2005


A brain chemical recently found to boost trust appears to work by reducing activity and weakening connections in fear-processing circuitry, a brain imaging study at the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH) has discovered. Scans of the hormone oxytocin’s effect on human brain function reveal that it quells the brain’s fear hub, the amygdala, and its brainstem relay stations in response to fearful stimuli. The work at NIMH and a collaborating site in Germany suggests new approaches to treating diseases thought to involve amygdala dysfunction and social fear, such as social phobia, autism, and possibly schizophrenia, report Andreas Meyer-Lindenberg, M.D., Ph.D., NIMH Genes Cognition and Psychosis Program, and colleagues, in the December 7, 2005 issue of the Journal of Neuroscience.


Functional magnetic resonance imaging data (red) superimposed on structural MRI scans. Frightful faces triggered a dramatic reduction in amygdala activity in subjects who had sniffed oxytocin, suggesting that oxytocin mediates social fear and trust via the amygdala and related circuitry. Source: NIMH Genes, Cognition and Psychosis Program.



"Studies in animals, pioneered by now NIMH director Dr. Thomas Insel, have shown that oxytocin plays a key role in complex emotional and social behaviors, such as attachment, social recognition and aggression," noted NIH Director Elias Zerhouni, M.D.. "Now, for the first time, we can literally see these same mechanisms at work in the human brain."

"The observed changes in the amygdala are exciting as they suggest that a long-acting analogue of oxytocin could have therapeutic value in disorders characterized by social avoidance," added Insel.


Inspired by Swiss scientists who last summer reported [1] that oxytocin increased trust in humans, Meyer-Lindenberg and colleagues quickly mounted a brain imaging study that would explore how this works at the level of brain circuitry. British researchers had earlier linked increased amygdala activity to decreased trustworthiness. [2] Having just discovered decreased amygdala activity in response to social stimuli in people with a rare genetic brain disorder that rendered them overly trusting of others, Meyer-Lindenberg hypothesized that oxytocin boosts trust by suppressing the amygdala and its fear-processing networks.

To test this idea, he asked 15 healthy men to sniff oxytocin or a placebo prior to undergoing a functional magnetic resonance imaging (fMRI) scan, which reveals what parts of the brain that are activated by particular activities. While in the scanner, the men performed tasks known to activate the amygdala – matching angry or fearful faces and threatening scenes.

As expected, the threatening pictures triggered strong activation of the amygdala during the placebo scan, but markedly less activity following oxytocin. The difference was especially pronounced in response to threatening faces, suggesting a pivotal role for oxytocin in regulating social fear. In addition, oxytocin dampened the amygdala’s communication with sites in the upper brainstem that telegraph the fear response. The results mirrored findings in rats [3], reported earlier this year by European scientists.

"Because increased amygdala activation has been associated with social fear in social phobia, genetic risk for anxiety and depression, and possibly with social fear in autism assessed during faces processing, this dual mode of action of oxytocin in humans suggests a potentially powerful treatment approach toward socially relevant fear," suggest the researchers.

People with autism characteristically avert their gaze from faces. A fMRI study [4] reported earlier this year by NIMH grantee Richard Davidson, Ph.D., University of Wisconsin, and colleagues, found over-activation of the amygdala in people with autism when they were looking at faces. Meyer-Lindenberg said future studies may test oxytocin as a treatment for such social anxiety symptoms in children with autism.

"Future research may also examine how oxytocin affects the amygdala in women, the mode of action of related hormones such as vasopressin, and how genetic variants in these hormones and their receptors affect brain function," he added.

Also participating in the research were: Peter Kirsch, Christin Esslinger, Daniela Mier, Stefanie Lis, Harald Gruppe, Bernd Gallhofer, Justus-Liebig University, Giessen, Germany; Qiang Chen, Sarina Siddhanti, Venkata Mattay, NIMH Genes Cognition and Psychosis Program.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>