Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity Prevents Injections from Reaching Muscle

29.11.2005


Women may not be getting the most out of vaccines and other injections, according to a study presented at the annual meeting of the Radiological Society of North America (RSNA).



"Our study has demonstrated that a majority of people, especially women, are not getting the proper dosage from injections to the buttocks," said lead author Victoria O. Chan, M.B., registrar in the clinical medicine department of The Adelaide and Meath Hospital in Dublin, Ireland.

"There is no question that obesity is the underlying cause," Dr. Chan said. "We have identified a new problem related, in part, to the increasing amount of fat in patients’ buttocks."


Many medications are administered through injections into the muscles of the buttocks, including painkillers, vaccines, contraceptives and anti-nausea drugs. The upper, outer quadrant of the buttock is the preferred site for intramuscular injections, because there are relatively few major blood vessels, nerves and bones in this region that could be damaged by the needle. Yet the rich supply of microscopic blood vessels in muscle speeds drug absorption into the system.

Intramuscular injections are a common alternative when patients cannot swallow oral medications, are fasting for a procedure or have a metabolic disorder that inhibits the absorption of orally ingested medication. The use of intramuscular injections has increased over the past 10 years, and new medications have been developed for delivery in this way. However, Dr. Chan’s research has demonstrated a majority of these injections are largely ineffective.

"Our study has shown that 68 percent of intramuscular injections do not reach the muscles of the buttock," Dr. Chan said. "The amount of fat tissue overlying the muscles exceeds the length of the needles commonly used for these injections."

Pharmaceutical companies design medications so that the proper dosage is absorbed into the blood stream from the muscle. Because fat tissue has significantly fewer blood vessels relative to muscle, less of the medication is absorbed into the blood stream and delivered to the appropriate part of the body. "This results in the patient either not receiving the maximum benefit of the drug or receiving no benefit at all, because the drug levels are insufficient to have any effect," Dr. Chan said.

Furthermore, if the medication is not absorbed into the blood stream, it remains in the fatty tissue where it can cause local infection and irritation.

Dr. Chan and colleagues recruited 50 patients scheduled for computed tomography (CT) exams of the abdomen or pelvis. The patient group was equally divided among men and women, ranging from 21 to 87 years old.

Prior to the CT exams, patients were given intramuscular injections with the addition of a small air bubble into the upper quadrant of the buttocks using a standard-size needle. The researchers analyzed the CT images to determine the location of the air bubble and also measured body mass index, distance to injection site and thickness of fat and muscle.

The overall success rate of the injections was 32 percent. The success rate among men was 56 percent, while the success rate among women was only 8 percent, meaning 23 of 25 women did not receive injections into the muscle. Compared to men, women typically have a higher amount of fat in their buttocks. Dr. Chan proposes that a longer needle length is required to increase the success rate of intramuscular injections. "The more fat tissue there is in the buttock, the less likely the needle will reach the muscles underneath that fat," Dr. Chan said.

Co-authors are Jane Colville, M.B., Orla Buckley, M.B., Samuel Hamilton, M.B., Thara Persaud, M.B., and William Torreggiani, M.B.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>