Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic fiction becomes science fact…

24.11.2005


A highly dexterous, bio-inspired artificial hand and sensory system that could provide patients with active feeling, is being developed by a European project.



Funded by the Future and Emerging Technologies initiative of the IST programme, the CYBERHAND project aims to hard wire this hand into the nervous system, allowing sensory feedback from the hand to reach the brain, and instructions to come from the brain to control the hand, at least in part.

Coordinated by Professor Paolo Dario with Professor Maria Chiara Carrozza leading the development of the hand, the project united researchers from Germany, Spain, Italy and Denmark.


So far, the project is racking up an impressive list of achievements. It has a complete, fully sensitised five-fingered hand. The CYBERHAND prototype has 16 Degrees of Freedom (DoFs) made possible by the work of six tiny motors.

Each of the five fingers is articulated and has one motor dedicated to its joint flexing for autonomous control. It features that miracle of evolution, the opposable thumb, so the device can perform different grasping actions.

Taking inspiration from the real hand, where a muscle pulls a tendon inside a synovial sheath, CYBERHAND’s finger cables run through a Teflon sheath pulled by a DC motor. So the proximal, medial and distal phalanges, those bones between your finger knuckles, are all driven by the same tendon. This approach is called underactuation as there are more Degrees of Freedom than Degrees of Movement (motors); it means the prosthesis has a self-adaptive grasp.

"This is a fundamental feature of the CYBERHAND prosthesis because only a limited number of control signals are available for user’s voluntary control," says project manager, Dr Lucia Beccai. Importantly, it also means less user effort is required to control the hand during daylong use.

The CYBERHAND prototype integrates the two types of human senses. One senses where parts of the body are relative to other parts, whether our fingers are open or closed, for example. The other relates to taste, touch, sound, hearing and sight that tell us about the external world. CYBERHAND includes sensors for tension, force, joint angle, end stroke and contact in the final prototype.

This prototype uses Longitudinal IntraFascicular Electrodes (LIFEs) to connect the hand to the nervous system. Within the CYBERHAND project, in addition to traditional wire LIFEs, a new type of electrode has been developed to improve performance and make them less invasive in humans: the Thin Film LIFE (tfLIFE).

So far, the project has produced excellent science and engineering to create an impressive prototype. The next step is to test the device in humans.

Currently researchers are addressing all necessary medical and ethical issues for implantation in human volunteers. A clinical partner has been identified and the Local Ethical Committee has given the approval for the clinical validation of CYBERHAND system, which should begin in 2006.

Some companies have expressed interest in commercialising the system. Nevertheless, it could be five to eight years before the device clears all the tests necessary to prove its safety, usability, and robustness.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>