Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW scientists report a new method to speed bird flu vaccine production

01.11.2005


In the event of an influenza pandemic, the world’s vaccine manufacturers will be in a race against time to forestall calamity. But now, thanks to a new technique to more efficiently produce the disarmed viruses that are the seed stock for making flu vaccine in large quantities, life-saving inoculations may be available more readily than before. The work is especially important as governments worldwide prepare for a predicted pandemic of avian influenza.



Writing this week (Oct. 31, 2005) in the online edition of the Proceedings of the National Academies of Science (PNAS), a team of researchers from the University of Wisconsin-Madison and the University of Tokyo report a new way to generate genetically altered influenza virus. The lab-made virus - whose genes are manipulated to disarm its virulent nature - can be seeded into chicken eggs to generate the vaccine used in inoculations, which prepare the human immune system to recognize and defeat the wild viruses that spread among humans in an epidemic or pandemic.

In their report, a team led by UW-Madison virologists Yoshihiro Kawaoka and Gabriele Neumann, describes an improved "reverse genetics" technique that makes it easier to make a seed virus in monkey kidney cells, which, like tiny factories, churn out millions of copies of the disarmed virus to be used to make vaccines.


In nature, viruses commandeer a cell’s reproductive machinery to make new virus particles, which go on to infect other cells and make yet more virus particles. Vaccine makers use a monkey kidney cell line to make non-virulent viruses that serve as the raw material for vaccines. The technique reported by the Wisconsin team improves upon a previous reverse genetics method (developed by Kawaoka’s group in 1999) by significantly reducing the number of plasmid vectors required to ferry viral genes into the monkey kidney cells used to produce the virus particles to make vaccines. "Compared to other types of cells, which are not approved for vaccine production, it is not always easy to introduce plasmids into the monkey kidney cells, which are approved for such use," says Kawaoka, an influenza expert and a professor of pathobiological sciences in UW-Madison’s School of Veterinary Medicine. Monkey kidney cells are used routinely for generation of seed strains for vaccine production because they are not known to carry any unknown infectious agents and do not cause tumors.

According to Kawaoka, "application of the new system may be especially advantageous in situations of outbreaks of highly pathogenic avian influenza viruses."

When a new strain of highly virulent influenza emerges to infect humans, vaccine makers must tailor their vaccines to match it because, genetically, the virus is always different. The process is a race against time and can take months depending on how quickly new strains are identified, genetically disarmed and subsequently generated in the lab for use to make vaccines in large quantities. The new technique promises to ensure ready generation of seed strains for the production of vaccines required to blunt the spread of influenza. In the event of an outbreak of especially virulent strains of influenza, such as the H5N1 or "bird flu" viruses now being monitored by scientists, any efficiency in the manufacture of vaccines will be important.

The method devised by Kawaoka and his colleagues reduces the number of plasmids required to introduce viral genes into the monkey kidney cell lines used to mass produce the deactivated virus for use in vaccine manufacture. "By reducing the number of plasmids, we increase the efficiency of virus production," Kawaoka explains.

In addition to Kawaoka, the new PNAS report was authored by Neumann of the UW-Madison School of Veterinary Medicine, Ken Fujii of the University of Tokyo’s Institute of Medical Sciences, and Yoichiro Kino of Japan’s Chemo-Sero Therapeutic Research Institute. The work was funded by grants from the U.S. National Institutes of Health, the Ministries of Education, Culture, Sports, Science and Technology of Japan, and by the Core Research for Evolutional Science and Technology.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>