Precision radiation therapy yields rare success for liver tumors

Shaped-beam radiation therapy is a promising treatment for life-threatening metastatic liver tumors, according to researchers at the University of Rochester Medical Center who report an 88 percent success rate for controlling the lesions. This is the first evidence that doctors can treat these tumors with radiation, and the results doubled the average length of survival.


“Radiation therapy has not been a recommended treatment for liver metastases because of the poor results when whole-liver radiation was used,” said Alan Katz, M.D., M.P.H., lead researcher and assistant professor of Radiation Oncology. “High-dose, precision radiation therapy is proving to be a promising therapy for metastatic liver disease and provides an effective treatment option for patients who previously didn’t have any.”

Radiation oncologists at the University’s James P. Wilmot Cancer Center are leading the effort to expand shaped-beam radiation therapy – originally designed to treat brain tumors – to target metastatic liver tumors with pinpoint accuracy. Initial treatment results were presented this week at the American Society for Therapeutic Radiology and Oncology’s annual meeting in Denver.

Many forms of cancer are treated with radiation therapy, but tumors in the liver are difficult to target using conventional techniques because the organ moves during breathing. Shaped-beam radiation therapy, also known as stereotactic body radiation therapy, has expanded treatment options by delivering a high dose of radiation precisely to the tumor, while limiting the damage to healthy tissue surrounding the tumor.

In Rochester, doctors treated 72 patients with metastatic liver lesions between April 2001 and October 2004. Most of the patients had colorectal, breast, pancreatic, lung, genitourinary, esophageal and ovarian cancers, which had spread to the liver. The patients had a median of two lesions that ranged from 0.5 centimeters to 12.2 centimeters in diameter.

Doctors followed the patients’ progress for an average of a year, though some were followed as long as three years, and the average survival was 13 months.

“This is remarkable. For people who are facing this deadly disease, doubling the length of survival brings hope to our patients and that is so important,” Katz said.

Katz led the research, along with Paul Okunieff, M.D., chair of Radiation Oncology, Michael Schell, Ph.D., Christine Huggins, Ph.D., and Madeleine Carey Sampson, M.D.

The Wilmot Cancer Center has been leading the research into expanding the use of stereotactic radiation therapy to treat tumors throughout the body. For the past five years, radiation oncologists have been studying its use in treating a variety of primary and metastatic tumors throughout the body and developing models for delivering radiation to organs that cannot be immobilized, such as the lungs and liver.

Media Contact

Leslie White EurekAlert!

More Information:

http://www.urmc.rochester.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors