Anaesthesia – can the patient feel the knife?

Anaesthetic agents are potentially dangerous drugs, and major patient complications can occur. If the patient is overdosed, death or major body organ damage can occur. Conversely, if the patient is under-dosed, patient awareness can occur. There is a narrow drug concentration “window” for both drug safety and anaesthetic efficacy, and the development of ways in which to monitor drug delivery concentration has been a major driver in anaesthetic agent safety research.

The Oxford invention has met this anaesthesia challenge by using modified statistical techniques to classify the physiological state of a human or animal subject. The classification monitors changes in the physiological state that occur over time either spontaneously or from external stimuli. Analysis of data obtained from anaesthetic trials has demonstrated the efficacy of the method for monitoring the depth of anaesthesia.

As well as using encephalograms the invention may be used advantageously with other forms of physiological data: electromyography to indicate muscle activity; analysis of images from magnetic resonance, computed tomography, X-ray and ultrasound; electrocardiography for blood pressure and blood oxygenation. The method also has many other applications including the monitoring of: consciousness, sleep, neuropathology, cerebral intoxication, cognitive state and muscle tremor.

Media Contact

David Eastham alfa

More Information:

http://www.isis.ox.ac.uk

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors