Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new treatment for insulin-dependent diabetes

26.09.2005


Scientists in Japan have found a way to improve on a promising diabetes treatment. In the October 3 issue of The Journal of Experimental Medicine, Masaru Taniguchi and colleagues report that transplanted insulin-producing cells survive better when the activation of a specific type of immune cell is blocked.



Insulin-dependent diabetes is caused by the destruction of the insulin-producing cells in the pancreas (called islet cells) by auto-reactive T cells. The loss of insulin results in an inability to control blood sugar levels. Transplantation of islet cells is an effective way to restore insulin production, but this therapy requires life-long immunosuppression of the patient. Even with immunosuppression, up to half of the transplanted cells are rapidly destroyed by the patient’s own T cells.

Taniguchi’s group used a mouse model to show that a subset of cells known as natural killer T (NKT) cells instigates the rapid destruction of the islet cells. NKT cells become activated -- likely in response to the stress of the transplant procedure -- and produce an inflammatory molecule called interferon (IFN)-gamma, which helps to activate the auto-reactive T cells. In mice that lack NKT cells or are unable to produce IFN-gamma, the transplanted cells survived.


The group went on to show that multiple doses of a drug (called alpha-galactosylceramide), which activates NKT cells in single doses, caused these cells to produce less IFN-gamma. The decreased IFN-gamma production protected the transplanted islet cells. The authors thus suggest that multiple doses of the same compound, currently in clinical trials in humans, might help prevent the early loss of transplanted islet cells in patients with insulin-dependent diabetes.

Nickey Henry | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>