Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting cocaine-memories to battle addiction

15.09.2005


Addicts crave drugs and suffer relapse not just because of the alluring high of drugs, but also because they are compelled by the powerful, haunting memory associations with the environment surrounding their drug taking. Thus, treatments that could eliminate those memory associations could prove effective in treating addiction, researchers believe.



In two papers in the September 15, 2005, issue of Neuron, two groups of researchers report important progress toward such treatments, showing that they can selectively knock out memory associations connected with receiving cocaine.

In one paper, Jonathan Lee and his colleagues at the University of Cambridge create an animal model of such cocaine memory formation by first teaching rats to associate the poking of their noses into a food bin with an infusion of cocaine into the brain and with the activation of a signal light. They infused cocaine into the amygdala, a brain region involved in forming and processing emotional memories.


The researchers then extinguished the drug-related memory by giving the animals only saline solution when they poked their nose into the bin, activating the light.

In their procedure, the researchers then added a new drug-associated response by requiring the animals to press a lever to obtain cocaine, with the lever also activating the same signal light.

Their purpose was to test the effects of treatment on a memory process called "reconsolidation." The theory underlying reconsolidation is that when memories are recalled they become malleable, subject to disruption.

To discover whether they could disrupt reconsolidation of the drug-related memory, before the animals were exposed to the new lever-pressing task, the researchers injected into the amygdalas of the trained animals a molecule that would effectively shut down the gene that produces a protein called Zif268. This protein is known to be active when cocaine-conditioned memories are created. The injected molecule was "anti-sense" DNA that would attach to the gene, blocking its activation.

The researchers found that such anti-sense DNA treatment disrupted the rats’ ability to learn to associate the new lever-pressing behavior with the signal light to obtain cocaine, despite the fact that the animals showed no other differences from a control group in lever-pressing activity or nosepoke response and thus no difference in general motivation or activity.

The researcher wrote that "Drug-associated stimuli are critically important in the acquisition of prolonged periods of drug-seeking behavior, maintenance of this behavior in the absence of reward, and precipitation of relapse to drug seeking in the absence of reward. Therefore, the ability to disrupt retroactively the conditioned reinforcing properties of a drug cue provides a potentially powerful and novel approach to the treatment of drug addiction by diminishing the behavioral impact of drug cues and thereby relapse."

Lee and his colleagues point out that the basic processes of such drug-associated memory reconsolidation are distinct enough from normal memory that "it is possible to manipulate preexisting maladaptive memories in a highly specific manner, without affecting either the reconsolidation of other established memories or the consolidation of new memories."

In a second Neuron paper, Courtney Miller and John Marshall of the University of California, Irvine, explored how another brain region, the nucleus accumbens, operated in cocaine-associated memories. The nucleus accumbens receives neural input from the amygdala and is involved in motivating such reward-related behavior as drug seeking.

In their experiments, the researchers taught rats to associate one of two connected chambers with receiving cocaine and measured how well the rats remembered that association and chose to move to that chamber.

The researchers’ analysis of molecular regulatory pathways in the animals’ nucleus accumbens revealed that a master neural regulatory pathway, triggered by a molecular switch called ERK, was activated when the trained animals showed a preference for the "cocaine chamber."

What’s more, the researchers discovered that drugs that blocked the ERK pathway prevented the trained animals’ memory retrieval of their preference for that chamber.

And to their surprise the researchers found that the drugs also blocked memory reconsolidation--significantly reducing the rats’ preference for the cocaine chamber even two weeks after being given.

"To our knowledge, the current study is the first to identify a molecular mechanism that blocks both retrieval and reconsolidation of any type of memory," wrote Miller and Marshall.

"While much remains to be understood concerning the cellular processes underlying the effects of ERK in drug-stimulus associations and other types of learning and memory, the present findings offer hope for treating cue-elicited relapse in addicts," concluded Miller and Marshall.

"It is widely accepted that memories for drug-associates stimuli, which are strong and resistant to extinction, are responsible for much of the relapse seen in addicts. The present findings suggest that these highly resistant memories may again be made labile and thus susceptible to disruption by pharmacological or other neurobiological interventions, providing opportunities for new therapies," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org.
http://www.cell.com

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>