Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A water tale for all seasons: When it comes to hydration and exercise, the system works

05.09.2005


A US Army lab found dehydration has a minimal effect in the cold, but cuts performance by 8% in temperate weather. It’s the difference between a 2 hour-30 minute and a 2:42 marathon. Plus, five “common sense” tips on hydration, exercise and weather

Dehydration has minimal effect in cold, but cuts performance by 8% as temperature rises; the difference between a 2:30 and a 2:42 marathon

Common sense" tips on hydration



For over 20 years, the U.S. Army Research Institute of Environmental Medicine has studied the effect of temperature and the environment on physical performance. According to Michael Sawka, chief of USARIEM’s Thermal and Mountain Medicine Division, "we’re filling in the data gaps regarding the interaction of temperature and hydration on physical performance so we can set guidelines to optimize results relevant not just to soldiers or navy divers, but to athletes, firefighters and hunters – anyone who’s in extreme environments without access to food or water for long periods."

Several recent USARIEM studies in the Journal of Applied Physiology describe experiments in both warm and cold temperatures. One report showed that dehydration reduces physical performance, in this case cycling, 8% in temperate/cool air (68 degrees Fahrenheit), but only 3% in a cold 36 degrees F. Furthermore it found that cold weather itself had an insignificant impact on physical performance, irrespective of hydration level.

A second USARIEM-generated study found that ingesting glycerol, a sweetish syrup, was an effective hyperhydration agent, causing "nearly twice as much fluid" to be retained after four hours of cold-air exposure (CAE) compared with water ingestion alone. "This study also demonstrates that hyperhydration doesn’t modify cardiovascular or thermoregulatory responses during resting CAE," the reported added.

How glycerol may hold water ’in reserve’ in body for use later

The implications of the second study are particularly interesting for prolonged outdoor exposure when rehydration is not possible. "Because glycerol is freely distributed in body water, hyperhydration with GI (glycerol ingestion) may better preserve the extravascular fluid volume, accounting for the improved TBW (total body water), compared with water alone. This extravascular ’reserve’ could later be called on during exercise or heat stress, when hydration becomes important to performance and thermoregulation," the paper noted.

Catherine O’Brien, lead author of the glycerol study, said "there’s a window of two to six hours where GI could be beneficial. That’s a narrow niche where it might be useful for instance for soldiers on short-range patrol with inadequate access to rehydration." The paper noted that the experiments supported earlier findings "suggesting that glycerol induced hyperhydration through renal reabsorption of water and glycerol. Finally, this study provides insight into the hormonal mechanisms of cold-induced diuresis and fluid shifts due to hyperhydration."

Next steps

"Whether the degree of hyperhydration" in the current study "is sufficient to improve physical performance in the cold or thermoregulation during subsequent body warming due to exercise or heat exposure remains to be demonstrated," the paper noted.

In addition, O’Brien said: "We learned previously that hydration doesn’t seem to affect susceptibility to frostbite. But soldiers and outdoorsmen are more affected by their hands and fingers getting stiff. We’re going to look at how physical performance such as manual dexterity can better be maintained in the cold."

Some dehydration shows no performance effect in cold, but does as temperature rises

It’s well recognized that athletes perform progressively better as the temperature falls from hot to cool. It is also known that dehydration worsens performance in the heat, but its effect in milder environments is not well understood. A USARIEM team led by Samuel N. Cheuvront found that dehydration by 3% of body weight had little adverse impact on cycling performance in the cold (36F), but markedly reduced performance in temperate air (68F).

"We induced a 3% body weight loss because that’s about how much water the average marathon runner loses," Cheuvront noted. The team found that while this much dehydration produced only a minor negative affect at 36F, at 68F it made a significant 8% cut in performance. "We measured performance as work performed (in kilojoules), but the real indicator is time: 8% over the course of a marathon is the difference between finishing in 2 hours 30 minutes or 2 hours 42 minutes – and that’s a big difference!" Cheuvront said.

He added a quick note of realism, though: "Remember that although we’re testing healthy and fit Army recruits, the average competitive runner’s performance might not drop as drastically." The other important finding in the experiment was that with hydration kept steady, cold in and of itself did not negatively impact performance.

Some elegant measures of "importance" and exertion

Interestingly, the researchers found that during exercise the subjects "thought" they were working at exactly the same rate of exertion, even though there was a major difference between their actual performances.

Another measure they used is called the "zone of indifference," which can indicate not just whether a finding is or is not "statistically significant, but if it’s biologically important or meaningful," Cheuvront said. "In this case the results were both statistically significant and meaningful," he added. The "spirit of this approach, most closely related to equivalence testing in the clinical sciences, has recently been championed as a performance interpretation tool for the exercise sciences by Dr. William G. Hopkins," the paper noted.

Next steps: "The preservation of endurance performance in cold air when hypohydrated may be explained by differences in cardiovascular function and oxygen uptake dynamics," the paper said. "Although the present experiment was not designed to assess the mechanism behind performance changes, the explanation is reasonable based on the work of others," it added.

Some ’common-sense’ tips on hydration

  • The Boy Scout adage still holds: "Check urine color. It should be relatively clear. If it’s dark, you need to drink more," O’Brien said.
  • "Although the 8-by-8 rule of drinking eight 8-ounce glasses of water a day is well recognized, is has almost no scientific basis. The recent Institute of Medicine report on water and electrolytes established an Adequate Intake (AI) for water of 3.7 liters/day for a normal adult male, but there is wide variation. Importantly, that 3.7 liters includes water from food and drink, including beverages like coffee or tea," Cheuvront noted.
  • Exercise fluid intakes should result in neither weight gain nor excessive weight loss (more than 2% of body weight). "Weighing oneself nude before and after exercise is the best way to gauge success around this recommendation," Cheuvront added.
  • Don’t drink too much, even in the heat: "We have this mistaken belief that more water is better. Not true. The Army has actually reduced the amount of water it gives in the heat," Sawka said.
  • Even in the cold, other recent USARIEM studies showed that "reduced body water levels (hypohydration) does not increase the risk of hypothermia or peripheral cold injury" such as frostbite, the Cheuvront paper reported.

    Mayer Resnick | EurekAlert!
    Further information:
    http://www.the-aps.org

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>