Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic brain imaging in the palm of your hand

25.08.2005


New portable device captures pictures beneath the living brain’s surface



Researchers at Stanford University have demonstrated a promising, minimally invasive optical technique that can capture micron-scale images from deep in the brains of live subjects. The method, called two-photon microendoscopy, combines a pair of powerful optical and mechanical techniques into one device that fits in the palm of the hand. The results appear in the September 1, 2005 issue of Optics Letters, a journal published by the Optical Society of America.

Researchers want to image individual cells inside living subjects because it will give them insight into how cellular behavior gives rise to the properties of organisms as a whole. For instance, the nerve cells of the hippocampus region of the brain give rise to important mental processes such as learning and memory.


Imaging living cells below the surface has been difficult to accomplish using conventional techniques. Electron microscopy can’t be used on living tissue, and optical (light) microscopy can’t penetrate very deeply into tissue because light scatters as it travels through tissue near the surface. Thus traditionally microscopic images of the living brain have only been made near the surface. Yet researchers would like to know more about certain deep-tissue areas of the brain, which are critical to understanding Alzheimer’s and Parkinson’s disease, for example.

Scientists often use some form of fluorescence microscopy to image tissue. In conventional "one-photon" fluorescence imaging, the scientist injects a dye into tissue and then shines a bright light. The tissue fluoresces, or radiates, light of a different color in response. However, a problem with one-photon fluorescence is that the deep tissue causes the photons to ricochet, or scatter, as they return to the detector. The result is a background haze in the images, almost like viewing the sample through a cloud.

It’s possible to get rid of background haze and reduce the scattering using two-photon fluorescence imaging. Instead of one higher-energy photon, researchers bombard the molecule with two photons of lower energy. Their combined energies total the energy required to excite the fluorescent-dye molecules used to mark the tissue. The technique gets rid of the background haze and reduces scattering, because molecules outside the area of interest are much less likely to absorb a pair of photons simultaneously and fluoresce in response.

While two-photon microscopy offers an alternative to traditional one-photon fluorescence microscopy, it still only penetrates brain tissue down to about 500-600 microns – barely scratching the surface. To get at the deep structures, the Stanford researchers turned to microendoscopy, tiny, minimally invasive optical probes that could be inserted deep into living brain tissue. To make one group of images (figures 1c-1e), the researchers inserted the microendoscope into the hippocampus, about a millimeter below the mouse brain surface, to image this part of the brain. The two-photon imaging provided an additional 80 microns of depth, below the hippocampal surface.

When combined with two-photon fluorescence, the result is a system that brings the power of a cutting-edge imaging technique to the deep tissues of the brain. By creating a handheld device based on some of the latest advances in micromotors, lensing and fiber optics (see accompanying article for more information), the researchers were able to establish a new technique that enables them to obtain microscopic images deeper in the living brain than was possible before microendoscopy.

"We’re bringing two-photon imaging to endoscopy and we’re putting it all into a miniaturized package," says Mark Schnitzer, the team leader on the Optics Letters paper.

The Stanford researchers have used their two-photon microendoscopy technique to glean the detailed images of the blood vessels in the hippocampus sections of the brains of live mice. The mice were injected with a fluorescein dye – an FDA-approved contrast agent that is most commonly used for retinal exams in humans. The fluorescein labeled the blood plasma so the vessels in the brain could be clearly seen.

There are many different options for further exploration, now that the technique has been successfully demonstrated, ranging from biomedical research to clinical imaging applications. The Stanford researchers will be looking into several of those options.

"This is a portable handheld device with the power of two-photon imaging -- the full functionality of a microscope that fits in the palm of your hand," says Schnitzer, indicating that this is what makes the technology eminently marketable.

Ben Stein | EurekAlert!
Further information:
http://www.aip.org

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>