Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model of Rett Syndrome displays reduced cortical activity

23.08.2005


Sacha Nelson of Brandeis University in Waltham, MA and Rudolf Jaenisch of the Whitehead Institute of Biomedical Research in Cambridge, MA and their colleagues report online today in the Proceedings of the National Academy of Sciences Early Edition that spontaneous neuronal activity is reduced in the cortex of a knockout mouse model for the childhood neurodevelopmental disorder, Rett Syndrome. The Rett Syndrome Research Foundation (RSRF) and the McKnight Foundation funded this project.



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

The nervous system consists of billions of neurons that communicate with each other. Neurons don’t touch and the gap between them is called a synapse. This gap is bridged by neurotransmitters that are released by the generation of electrical signals. Some neurotransmitters are excitatory and increase activity in the brain and others are inhibitory and decrease activity. In healthy brains, a balance between excitation and inhibition is essential for nearly all functions, including representation of sensory information, cognitive processes such as decision making, sleep and motor control.


The electrical signals that neurons generate can be measured using microelectrodes. Using a technique called, whole cell patch clamp, Vardhan Dani, a graduate student in Dr. Nelson’s lab and Qiang Chang a post doctoral fellow from Rudolf Jaenisch’s lab tested the electrical impulses in the cortex of the Rett Syndrome knockout mouse model. The cortex is one of the regions of the brain affected in patients with RTT. These mice are genetically manipulated so they lack the "Rett gene", MECP2. Like individuals with Rett Syndrome, they are seemingly normal at birth and begin to exhibit Rett-like behaviors by 5 weeks of age.

Interestingly, the groups found that the excitatory-inhibitory balance in the cortex of the mice was shifted towards inhibition (decreased brain activity). They surmise that this shift toward inhibition in the cortex and perhaps other brain regions could underlie some of the cognitive, motor, linguistic and social symptoms seen in RTT.

The spontaneous firing of L5 pyramidal neurons in 5 week-old mice was decreased 4-fold when compared to normal mice. This reduction is progressive, since two weeks earlier, in presymptomatic mice, the reduction was only 2-fold. This finding represents the first experimental evidence for a physiological abnormality that exists before symptoms appear.

"It’s important to note that since this defect is seen so early it suggests that the reduced cortical activity may be a primary cellular defect that may lead to other neuropathologies," shared Qiang Chang, co-first author on the paper.

Future work will focus on elucidating the mechanisms by which the lack of MECP2 leads to increased inhibition and reduced excitation. "The next step is to use a technique called paired recording to look at the properties of individual synaptic connections between pairs of cortical neurons to find out more precisely which connections change and how. We are also trying to understand which other neural genes are regulated by Mecp2 by measuring gene expression in neurons from knockout mice and their normal siblings," said Sacha Nelson, the corresponding author of the paper.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>